
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 34, NO. 3, MARCH 2024 1827

PBR-GAN: Imitating Physically-Based Rendering
With Generative Adversarial Networks

Ru Li , Member, IEEE, Peng Dai , Student Member, IEEE, Guanghui Liu , Senior Member, IEEE,
Shengping Zhang , Bing Zeng , Fellow, IEEE, and Shuaicheng Liu , Member, IEEE

Abstract— We propose a Generative Adversarial Network
(GAN)-based architecture for achieving high-quality physically
based rendering (PBR). Conventional PBR relies heavily on ray
tracing, which is computationally expensive in complicated envi-
ronments. Some recent deep learning-based methods can improve
efficiency but cannot deal with illumination variation well. In this
paper, we propose PBR-GAN, an end-to-end GAN-based network
that solves these problems while generating natural photo-
realistic images. Two encoders (the shading encoder and albedo
encoder) and two decoders (the image decoder and light decoder)
are introduced to achieve our target. The two encoders and the
image decoder constitute the generator that learns the mapping
between the generated domain and the real domain. The light
decoder produces light maps that pay more attention to the
highlight and shadow regions. The discriminator aims to optimize
the generator by distinguishing target images from the generated
ones. Three novel loss items, concentrating on domain translation,
overall shading preservation, and light map estimation, are
proposed to optimize the photo-realistic outputs. Furthermore,
a real dataset is collected to provide realistic information for
training GAN architecture. Extensive experiments indicate that
PBR-GAN can preserve the illumination variation and improve
the image perceptual quality.

Index Terms— Physically based rendering, generative adver-
sarial network, illumination variation.

I. INTRODUCTION

PHOTO-REALISTIC computer graphic methods are
recently ubiquitous, with applications that include enter-

tainment (movies and video games), and product design.
Over the past decades, physically based rendering (PBR) has
become widely used, where accurate modeling of the physics
of light scattering is important for image synthesis [3]. Photo-
realistic rendering aims to describe a 3D scene using an

Manuscript received 5 April 2023; revised 7 June 2023 and 11 July 2023;
accepted 16 July 2023. Date of publication 26 July 2023; date of current
version 7 March 2024. This work was supported in part by the National
Natural Science Foundation of China (NSFC) under Grant 62071097 and
Grant 62031009 and in part by the Sichuan Science and Technology Program
under Grant 2023NSFSC0458 and Grant 2023NSFSC0462. This article was
recommended by Associate Editor Y. J. Jung. (Corresponding authors:
Guanghui Liu; Shuaicheng Liu.)

Ru Li and Shengping Zhang are with the School of Computer Science and
Technology, Harbin Institute of Technology, Weihai 264209, China.

Peng Dai is with the Department of Electrical and Electronic Engineering,
University of Hong Kong, Hong Kong, SAR, China.

Guanghui Liu, Bing Zeng, and Shuaicheng Liu are with the School
of Information and Communication Engineering, University of Electronic
Science and Technology of China, Chengdu 611731, China (e-mail:
guanghuiliu@uestc.edu.cn; liushuaicheng@uestc.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSVT.2023.3298929.

Digital Object Identifier 10.1109/TCSVT.2023.3298929

image that is realistic and indistinguishable from a photograph.
The core problem of physically based rendering is the global
illumination problem. Almost all photo-realistic rendering sys-
tems, such as Blender [4], Maya [5], and Mitsuba [1] are based
on the ray-tracing algorithm. The introduction of the radiosity
algorithm by Goral et al. was the first incentive towards an
exact physical approach to the rendering problem [6]. Another
milestone was the proposal of the rendering equation, which
provides a more general physical framework [7]. Conventional
photo-realistic rendering is computationally expensive, and
handling complicated indoor scenes may even spend several
hours.

The introduction of deep learning (DL) provides valuable
inspiration for exploring better photo-realistic rendering tech-
niques [8]. Zhang et al. studied the effects of rendering
methods and scene lighting on training for three tasks [9].
Dai et al. proposed two stacked neural networks to predict the
shading images and the color images, respectively [2]. Several
DL-based methods apply PBR to achieve different tasks,
such as intrinsic decomposition [10], material editing [11],
and scene projector [12]. Although various techniques are
proposed for achieving photo-realistic rendering with learning-
based methods, handling illumination variation, especially in
the highlight and shadow regions, remains a challenge.

Recently, Neural Radiance Field (NeRF) has been designed
to render images of 3D scenes from novel viewpoints [13].
NeRF-based methods [14], [15], [16], [17] imitate the ren-
dering by encoding the color radiance and density of a scene
within the weights of a coordinate-based multi-layer percep-
tron (MLP). Many studies have been carried out to dive deeper
into NeRF-based network architecture, including the faster
training and inference for NeRF [18], extending NeRF from
image to video [19], and handling dynamic scenes [20]. How-
ever, NeRF-based methods primarily focus on synthesizing
novel viewpoints rather than generating more realistic images.
Moreover, these methods require per-scene optimization.

In this paper, we propose PBR-GAN, an end-to-end GAN-
based pipeline that achieves high-quality rendering with effi-
ciency. The advantages of our design include two aspects:
(1) the rendering procedure is accelerated with the proposed
architecture; (2) specific modules are designed to address the
challenging illumination variation. Inspired by intrinsic image
decomposition [21], [22], we design an inverse composition
network that fuses shading and reflectance information into
color images. Perfect shading is a crucial characteristic of
photo-realistic images, and accurate shading estimation is
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essential for PBR tasks. We formulate the shading estima-
tion into a convolution neural network (CNN). The shading
network takes a sequence of 2D rendering images, such as
surface normal, depth, and illumination, as inputs. Addition-
ally, a parallel reflectance extraction network is designed
to obtain reflectance features, which are then concatenated
to the shading features to generate complete color image
information. Compared with previous studies, our method is an
end-to-end architecture with parallel shading and reflectance
estimation encoders and two decoders concentrated on color
image reconstruction and light map prediction. The image
decoder outputs the photo-realistic images, while the light
decoder generates light maps to represent the illumination
variation. The overall pipeline is fluent and physically imitates
the inverse procedure of intrinsic decomposition. The light
decoder is a pioneering contribution for estimating illumi-
nation variation and can be applied to corresponding tasks,
such as light estimation and modification. These modules
are specifically designed to generate images with improved
shading information and to address illumination variation,
resulting in enhanced performance.

We adopt the rendered images from Mitsuba [1] as the
ground truth to optimize the generated photo-realistic images.
Generally, the synthetic data performs well but poorly in
certain difficult situations, such as regions lacking illumination
and limited rendering time, which easily generates images with
strong noise [9]. Moreover, the synthetic data cannot capture
all real-world statistics. Therefore, a real dataset containing
diverse indoor scenes is further collected to improve the clarity
and realism of the generated images. However, there is no
one-to-one correspondence between the real and generated
images. The GAN architecture is introduced to solve the
unpaired problem. The discriminator can discriminate between
these two types of images. In addition to the adversarial loss,
we introduce three novel loss items to concentrate on different
components of illumination variation. First, we introduce the
shading loss to preserve the overall shading information of
generated images, which constrains the distance between the
predicted shading images and the shading ground truth. Sec-
ond, we proposed the light loss to obtain accurate light maps
and a novel mask-based PBR loss, which designs the light map
as a mask to constrain the generated color images, directing
the network to focus more on the highlight and shadow
regions.

Fig. 1 shows the comparisons with the recent CNN-based
PBR-Net [2]. PBR-Net is a two-stage composition architecture
that aims to obtain the shading image and photo-realistic
image separately. On the contrary, the PBR-GAN is an end-to-
end architecture specifically designed to generate images with
better illumination variation, which is essential for producing
high-quality photo-realistic images. The example in Fig. 1
demonstrates that our method better captures the illumination
variation compared to PBR-Net. First, our method learns the
cast shadow generated by the window frame better. Second,
PBR-GAN produces the highlight region (the base of the lamp)
more prominently. Finally, the proposed method generates the
decoration outside the window more clearly. These improve-
ments are important for photo-realistic generation tasks.

Fig. 1. (a) Input images, including surface normal, depth, panoramic
illumination intensity, panoramic illumination distance, and the albedo. (b) 3D
scenes. (c) Ground truth rendered by Mitsuba [1]. (d) Result of PBR-Net [2].
(e) Result of the proposed PBR-GAN. Compared with PBR-Net, our method
can generate more realistic images with natural illumination.

Overall, the main contributions are:
• We propose an end-to-end GAN-based architecture for

generating color outputs from rendering sources. A real
dataset is collected to optimize the model to get realistic
images that are indistinguishable from real images.

• We design the generator to concentrate on the illumina-
tion variation. Specifically, an image decoder is proposed
to produce photo-realistic images, and a light decoder is
introduced to generate light maps. Three novel losses are
applied to estimate the highlight and shadow regions.

• We provide qualitative and quantitative comparisons with
several state-of-the-art methods to demonstrate the supe-
riority of our PBR-GAN.

II. RELATED WORKS

A. Photo-Realistic Generation Tasks

Photo-realistic image generation is applied in many
research studies [23], such as text-to-image [24] and image
super-resolution [25]. Inspired by CNN, Guo et al. applied
inverse-rendered photo-realistic face images to achieve face
reconstruction [26]. Li et al. introduced InteriorNet to
improve large-scale interior scene understanding and map-
ping [27]. Some methods apply variational autoencoder to
obtain photo-realistic images [28], [29]. Liu et al. narrowed
down the latent subspace using the conditional sampling mech-
anism to achieve photo-realistic image super-resolution [28].
Liu et al. proposed a reference-based photo-realistic image
super-resolution approach, which transfers the knowledge from
the reference to the super-resolved images [29].

The generative adversarial networks provide advantages
for generating photo-realistic images with diversity and
higher quality. The GAN architecture was proposed by
Goodfellow et al. [30], which has achieved remarkable results
across various fields [31], [32]. Zhang et al. introduced the
StackGAN to generate photo-realistic images according to
the text descriptions [24]. Liu et al. proposed Semantic-
GAN to transfer the semantic label map into high-resolution
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Fig. 2. The pipeline exhibits the architecture of PBR-GAN, which consists of five modules, each playing a different role. The shading encoder ES extracts
shading information from the surface normal In , depth Id , panoramic illumination intensity Ipi and panoramic illumination depth Ipd . The albedo encoder
E A obtains the albedo features from the albedo image Ia and concatenates them with the shading features to obtain complete color image information. The
image decoder DI recovers the color information to the photo-realistic images using up-convolution layers. The light decoder DL constructs a light map to
indicate the illumination variation. The shading encoder ES , the albedo encoder E A , and the image decoder DI together constitute the generator G, which
transfers the input images to output images with the desired characteristics. The discriminator D distinguishes whether a given image belongs to the synthetic
or real dataset. Here, k represents the kernel size, n denotes the number of feature maps, and s represents the stride in each convolutional layer.

images [33]. Some recent GAN-based photo-realistic image
generation works are proposed for combining multi-input
images [34], [35], [36]. Recently, Mildenhall et al. introduced
the differentiable volumetric rendering technique to optimize
a neural radiance field and generate novel viewpoints [13].
Subsequently, a series of works recovered the radiance field
using deep neural networks [14], [15], [16], [17], which have
enabled significant progress toward view synthesis. However,
NeRF-based methods require per-scene training and optimiza-
tion, limiting their generality. As for the PBR task, we design
a GAN-based architecture to generate photo-realistic images
from multiple rendering sources, which is suitable for any kind
of scene and pays more attention to the physical procedure of
rendering.

B. Image Composition and Decomposition

Intrinsic image decomposition has been studied for many
years. The classical intrinsic image decomposition approaches
apply various priors. For example, the seminal Retinex
algorithm assumes that the reflectance reflects the large image
gradients, while the shading represents the smaller gradi-
ents [37]. Then, the success of deep learning leads to the
exploration of high-quality decomposition methods. Li et al.
proposed a partial learning method that predict reflectance
and shading by combining the ground truth and the sparse
annotations from the IIW [38] and SAW [39] datasets.
Han et al. proposed to synthesize the training pairs, however,
the performance of the synthetic dataset is also not satisfactory
due to the inability to capture all the real-world statistics,
leading to models trained on synthetic data underperforming
on real images [40].

III. METHOD

We propose a GAN-based architecture to achieve
photo-realistic rendering with the assistance of real natural

images. The architecture includes two streams that output
different images. The first stream generates photo-realistic
images while being constrained by corresponding ground truth
and real images. The second stream produces a light map
to focus the network’s attention on illumination variation.
We adopt a set of five 2D images x = {In, Id , Ipi , Ipd , Ia}

obtained from rendering sources as our input data, including
the surface normal In , depth Id , panoramic illumination inten-
sity Ipi , panoramic illumination distance Ipd and albedo Ia .
We utilize Mitsuba [1] to generate the ground truth shading
image Igts and color image Igtc . However, the ground truth
images generated by the rendering software are not realistic
enough if the ray-tracing simulation is not accurately modeled,
such as imprecise modeling of material. We further gather
a collection of real images as the target domain Y to make
the results more realistic, denoted as {y j } j=1,...,M ∈ Y . The
proposed PBR-GAN is capable of achieving photo-realistic
rendering with necessary detail and illumination variation.

A. Network Architecture

The network architecture is shown in Fig. 2. The shading
encoder ES , albedo encoder E A and image decoder DI consti-
tute the generator G. Table I presents the layer configurations
of these modules. The shading information is derived from
four inputs: the surface normal In , depth Id , panoramic illumi-
nation intensity Ipi and panoramic illumination distance Ipd ,
which are extracted by three convolutional blocks and fed
into the shading encoder (Fig. 2 (b)). The albedo encoder
(Fig. 2 (c)) extracts the albedo features, which are then
concatenated with the shading features to obtain complete
color image features. The image decoder (Fig. 2 (d)) and the
light decoder (Fig. 2 (e)) recover the photo-realistic images
and the light maps, respectively. The encoder and decoder are
connected using a short-cut connection [42].
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TABLE I
LAYER CONFIGURATIONS OF THE PROPOSED ARCHITECTURE

1) Encoders: Table I (a) first presents three identical con-
volutional blocks for feature extraction of input images (from
row 3 to row 5), and then displays the layer configurations of
the shading encoder ES and albedo decoder E A (from row 6 to
row 10). The two encoders have identical architectures, each
comprising five convolution blocks to extract the shading and
albedo features, respectively.

2) Decoders: Table I (b) provides the detailed configuration
of the image decoder DI (from row 3 to row 7) and the light
decoder DL (row 8). The image decoder, which is responsible
for recovering features to generate images, comprises four
transposed convolutional blocks and a convolutional layer.
For the light decoder, inspired by [43], we utilize a con-
volutional block to generate two maps: a gray environment
illumination and a confidence map. The dimensions of the
gray environment illumination and confidence map are also
Fw × Fh ×1, where Fw and Fh are the width and height of the
features generated by the light decoder. We perform element-
wise multiplication of the gray environment illumination and
confidence map to obtain the final light map.

3) Discriminator: Table I (c) exhibits the architecture of the
discriminator D. The discriminator is complementary to the
generator, which is composed of several convolutional blocks.
Such a simple discriminator uses fewer parameters and can
work on images of arbitrary sizes.

B. Loss Function

The complete objective function includes four components:
(1) the PBR loss LPBR, which encourages the image decoder
to recover desired photo-realistic images; (2) the adversar-
ial loss LGAN, which incorporates the real domain images;
(3) the shading loss Lshading , which preserves the overall
shading information of the generated images; and (4) the light
loss Llight , which guides the light decoder to generate accurate
light maps. For the sake of brevity, we merge the shading
encoder ES and albedo encoder E A as the image encoder E I .
The complete objective function is formulated as follows:

L(E I , DI , DL , D) = wPBRLPBR(E I , DI )

+ wGANLGAN(E I , DI , D)

+ wshading Lshading(E I , DI )

+ wlight Llight (E I , DL), (1)

where the weights determine the relative importance of each
loss. wPBR and wGAN significantly influence the balance
between the rendering ground truth and collected real images.
When wGAN is set to 0, the real dataset is ineffective and

the network is solely constrained by the ground truth. Empir-
ically, we assign a higher value to wGAN to encourage the
generated images to capture more realistic information. We set
wPBR = 1 and wGAN = 1.5 in our implementation. The
weight of the shading loss wshading is useful for generating
results with more reasonable illumination variation. wshading
is set to 1 in our implementation. The weight of the light loss
wlight controls the accuracy of the light map. Since obtaining
matching light ground truth is challenging, we apply the
panoramic illumination intensity Ipi to guide the light decoder
and set wlight to 1 at the initial stage to make the light decoder
to be converged. Subsequently, as the training stabilizes and
the illumination variation information is adequately learned,
wlight is gradually reduced to minimize the impact of the
panoramic illumination intensity image. wlight is gradually
decreased to reduce the impact of the panoramic illumination
intensity image after training is stable and the illumination
variation information is properly learned.

1) PBR Loss: We modify the standard perceptual loss [44]
to create the PBR loss, which constrains the generated images
and the ground truth. The PBR loss is defined as follows:

LPBR(E I , DI )

= Ex∼pdata(x)[

N∑
l

λl ||Vl(DI (E I (x))) − Vl(Igtc )||1], (2)

where V represents the VGG network, l ∈ {1, . . . , N }

denotes the layers in the VGG19 network, and λl are the
hyper-parameters to balance the contributions of each layer.
In our implementation, we apply the features from the first
3 layers to calculate the perceptual loss, and the hyper-
parameters λl are set to 1.5, 1.5, and 1 to ensure a balanced
contribution.

Fig. 3 displays different results by using different loss
functions as the PBR loss. The L1 loss is first applied as the
PBR loss to minimize the discrepancy between the generated
images and the ground truth. As shown in Fig. 3 (a), the gen-
erated images appear blurry due to the extraction of low-level
features by the L1 loss function. On the contrary, the standard
perceptual loss utilizes 5 convolutional blocks of the VGG19
network [45] pre-trained on ImageNet [46] to calculate loss
values, making it sensitive to high-level abstractions. The
results of conventional perceptual loss on our task are shown
in Fig. 3 (b). The obvious patterns in Fig. 3 (b) are inevitable
due to the high-level feature calculation. To strike a balance
between the blurry caused by L1 loss and patterns generated by
perceptual loss, we use the features of the first 3 convolutional
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Fig. 3. (a) When we select L1 loss as PBR loss, the results are blurry. (b) The
standard perceptual loss produces unavoidable patterns. (c) When we apply
the modified perceptual loss as PBR loss, the results are clean and sharp.

blocks of the VGG19 network to create our PBR loss. The
results of our new PBR loss are shown in Fig. 3 (c), which
can effectively avoid blur and decrease the patterns.

2) Adversarial Loss: The adversarial loss balances the
generator and the discriminator. In our task, adversarial loss
drives G (the image encoder E I and the image decoder DI ) to
generate outputs that closely resemble real images. We gather
a real dataset with diverse indoor scenes as the target domain
to constrain the generated images similar to real images. The
examples of the real dataset are shown in Section IV-A. The
adversarial loss is defined as follows:

LGAN(E I , DI , D) = Ey∼pdata(y)

[
log D(y)

]
+ Ex∼pdata(x)

[
log(1 − D(DI (E I (x)))

]
.

(3)

3) Shading Loss: The shading loss is designed to maintain
the overall shading information of generated color images.
We first obtain the output shading Os according to the
output color image and the input albedo image by Os =

DI (E I (x))/Ia , and then minimize the difference between the
output shading Os and the shading ground truth Igts using
L2 loss. To avoid the differences caused by the scenes outside
the windows and the doors, we calculate the difference in
shading information in the form of gray images. Lshading is
defined as follows:

Lshading(E I , DI )=Ex∼pdata(x)[||Gray(Os)−Gray(Igts )||2],

(4)

where Gray is the gray images. Fig. 4 shows some shading
results. If the network performs well and generates realistic
images, the gray estimated shading images (Fig. 4 (b)) should
closely resemble the gray ground truth images (Fig. 4 (c)).

4) Light Loss: The PBR loss preserves the content infor-
mation, the adversarial loss ensures that the generated images
resemble the real domain images, and the shading loss main-
tains the overall shading information. They are inadequate for
desired photo-realistic transformation, particularly in regions
with illumination variation. Reasonable highlight and shadow

Fig. 4. Some results correspond to the shading loss. (a) Generated images.
(b) The estimated shading images. (c) The shading ground truth images.

reconstruction is essential for obtaining more realistic images.
We design a light loss Llight to detect the illumination condi-
tion of the generated images.

The light map is defined as a gray image, obtained by
multiplying the environment illumination and the confidence
map. The confidence weights reflect the values of a patch for
inferring the illumination variation, which is integrated into a
confidence-weighted pooling [43]. The light decoder can learn
from the PBR dataset about which local areas in an image are
informative for highlight and shadow generation. This technol-
ogy draws inspiration from color constancy algorithms [43],
where they apply the environment illumination to estimate
the special colors and the confidence map for inferring the
global color constancy. We modify it to adapt to the PBR task
to detect the illumination condition in the images, which is
helpful for detecting the light source and light irradiation areas.
We introduce the panoramic illumination intensity Ipi to guide
the light decoder to generate light maps that can locate the light
source better. The light loss minimizes the difference between
the light map DL(E I (x)) and the panoramic illumination
intensity Ipi , which is formulated as follows:

Llight (E I ,DL ) = Ex∼pdata(x)[||DL(E I (x)) − Ipi ||2]. (5)

Training the light decoder without any guidance poses a
significant challenge. The panoramic illumination intensity
Ipi appears similar to a binary image and only indicates the
location of the light source. The light map may represent the
panoramic illumination rather than the viewpoint illumination
if the light decoder is still constrained by Ipi . Therefore,
we provide a large decay factor to reduce the influence of Ipi
as the training epochs progress. After that, leveraging the light
decoder inspired by color constancy algorithms, the network
can learn from the PBR dataset about which local areas in
an image provide informative cues for highlight and shadow
generation. The variation trend of wlight is defined as:

wlight = wlight × 0.5⌊Ne/2⌋, (6)

where Ne is the number of the training epochs. With a decay
factor of 0.5, the weight will rapidly decrease towards 0 as
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Fig. 5. Some examples of light maps. The overlay results indicate that the
light detection is consistent with the images and almost accurate.

the training epoch progresses and the light maps will not be
affected by Ipi as its influence approaches 0 before epoch 10.

We show the light outputs in Fig. 5, among which the
overlay results (Fig. 5 (d)) indicate that the light detection
is consistent with the images and almost accurate. Generally,
the white regions in the light maps (Fig. 5 (c)) represent the
light sources and the light irradiation areas that easily produce
the highlight and shadow effects. Theoretically, if an object is
covered by light (located in the white regions), its shadow is
also located in the white regions. Alternatively, in some cases,
the shadow may locate in the black regions while the object is
situated in the white regions (the cushion in the bottom case
in Fig. 5). The gray color tends to represent regions with a
uniform texture. The light map has the potential to convey
more semantic value and encompass scene areas at an object
level. Note that, light detection differs from conventional
semantic segmentation. The segmentation generates accurate
segmentation results based on scene semantics, while our light
detection learns the illumination variation over the scene.

5) Mask-Based PBR Loss: In order to make the network
concentrate more on highlight and shadow regions, the light
map is further designed as a mask to constrain the PBR
loss. We first define Ol as the output of the light network,
which means that Ol = DL(E I (x)). The light map Ol is then
normalized to Olm with pixel values belonging to 1, 2, and 3,
as shown in the following equation:

Olm(i) =


3 Ol(i) ∈ white regions
2 Ol(i) ∈ black regions
1 Ol(i) ∈ gray regions,

(7)

where i represents the pixel in the light map. The normalized
light map is designed to have large values in white regions
(highlight regions) and relatively large values in black regions
(shadow regions). The mask-based PBR loss is designed to
impose more penalties on these regions if the image decoder
cannot recover them correctly, as defined in Eq. 8:

LPBRm (E I , DI )= Ex∼pdata(x)[

N∑
l

λl || O ′

lm ·Vl(DI (E I (x)))

− O ′

lm · Vl(Igtc )||1], (8)

where the light mask Olm is down-sampled and its channels
are duplicated to match the VGG feature dimensions. The
adjusted light mask is denoted as O ′

lm .

IV. EXPERIMENTS

We compare our method with several representative works,
including the rendering software: OpenGL [47] and Mit-
suba [1], and some learning-based methods: a typical paired
GAN-based image translation method pix2pix [48], a pop-
ular unpaired GAN-based image translation method Cycle-
GAN [49], an edge-preserving method CartoonGAN [50],
a popular diverse translation model StarGAN [51], a semantic
contrastive learning-based method Hneg-SRC [52] and the
recent physically-based rendering method PBR-Net [2]. Fur-
ther, we conduct the comparisons with NeRF [13] in terms of
detail and illumination preservation.

A. Datasets and Implementation Details

1) Data Collection: Two kinds of datasets are collected for
our task, among which the first one contains the PBR images
and the second one is composed of diverse realistic photos.
Some examples of these two datasets are shown in Fig. 6.

a) PBR dataset: SUNCG dataset [53] is applied as the
rendering source because it provides various indoor scenes
with realistic furniture layouts. The camera viewpoints are
sampled according to [9]. Our PBR datasets include five
input images: the surface normal In , depth Id , panoramic
illumination intensity Ipi , panoramic illumination distance Ipd
and albedo Ia , and two ground truth images: shading ground
truth Igts and color ground truth Igtc . In , Id , Ia and Igtc can
be directly rendered from Mitsuba [1]. The shading ground
truth Igts is generated by removing the texture from the
virtual scene and re-rendering the PBR image. Refer to [2],
we produce the panoramic illumination intensity map (Ipi ) and
the panoramic illumination distance map (Ipd ) to indicate the
light source information. For the training dataset, 20,000 and
1,000 groups of images are randomly selected. For the test
dataset, 1,000 groups of images were chosen.

b) Real dataset: We gather real images from the Internet
to increase the diversity of indoor scenes. We first gather
the images from popular search engines ‘Google’ [54] and
‘Baidu’ [55] using the following keywords: indoor decoration,
bedroom, washroom, parlor, kitchen, and so on to include
a wide range of indoor situations. In order to enhance the
diversity of the real dataset, we further use these keywords
to select videos from the ‘YouTube’ [56] website and extract
frames from the collected videos. Then, similar images are
discarded using LPIPS similarity [57]. The first two steps
are automatically performed, which may cost several minutes.
After that, in order to obtain the final real dataset, we manually
filter the collected images by preserving images with similar
furniture layouts to PBR images and deleting unreasonable
images. The last step takes up to two hours. In summary,
the process of collecting the real dataset is efficient and
advisable for incorporating real-world information into the
pipeline. Increasing the number of real images can enhance
the performance of the model, but finding the optimal balance
between effectiveness and efficiency is crucial. We empirically
find that a number between 1,000 and 2,000 is the best choice
for the real dataset because this range provides a diverse
set of images that aligns well with the capabilities of our
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Fig. 6. Some examples of the PBR dataset and the real dataset. The top three rows show three cases of the PBR dataset and each case includes five input
images (surface normal, depth, panoramic illumination intensity, panoramic illumination distance and albedo) and two ground truth images (the shading ground
truth and the color ground truth). The last two rows show some examples of the collected real dataset with diverse indoor scenes.

TABLE II
QUANTITATIVE COMPARISONS WITH OTHER METHODS IN TERMS OF SSIM, LPIPS AND FID. THESE METRICS SHOW THAT OUR RESULTS ARE

CLOSEST TO THE GROUND TRUTH AND REAL DATASET. RED INDICATES THE BEST PERFORMANCE AND BLUE REFERS TO THE SECOND BEST
RESULT. THE PERCENTAGE IN THE BRACKET INDICATES THE IMPROVEMENT OVER THE PBR-NET. † : THE PBR-GAN IS TRAINED

ON THE REAL DATASET WITH 1,082 IMAGES. ‡ : THE PBR-GAN IS TRAINED ON THE REAL DATASET WITH 2,000 IMAGES

architecture. The ablation studies of the LPIPS threshold and
the number of real images are conducted in Section IV-G.4.

2) Training Details: We implement PBR-GAN in PyTorch
and the model is trained on four NVIDIA RTX 2080Ti GPUs
with 30 epochs. The network is iterated using the Adam
optimizer with a learning rate of 2.0×10−4 for both the
generator and discriminator. On average, the training process
takes approximately 20 hours.

B. Quantitative Comparisons

We choose three representative evaluation metrics for the
quantitative comparisons, including the SSIM [58], learned

perceptual image patch similarity (LPIPS) [57] and the Fréchet
Inception distance (FID) [59], where the former two metrics
evaluate the similarity of generated images and rendering
ground truth, and the latter one measures the distance between
the generated and the real dataset. Table II lists the SSIM,
LPIPS, and FID scores of the aforementioned learning-based
methods and PBR-GAN. The PBR datasets are utilized for
training pix2pix, CycleGAN, CartoonGAN, and Hneg-SRC
with 200 epochs, StarGAN for 200,000 iterations, and PBR-
Net for 30 epochs. We first use three identical convolution
blocks (described in Section III-A) to extract the features of
five images (normal, depth, panoramic intensity, panoramic
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TABLE III
AVERAGE COMPUTATIONAL TIMES OF PBR-GAN AND THE COMPARISON METHODS WHEN GENERATING IMAGES WITH SIZE 360 × 480. WE REPORT

TWO VERSIONS OF PBR-NET AND PBR-GAN, WHERE THE NUMBERS OUTSIDE THE BRACKETS REPRESENT THE INFERENCE TIME, AND
THE NUMBERS IN THE BRACKETS ARE THE TOTAL RUNNING TIME, INCLUDING THE PRE-COMPUTATION AND THE INFERENCE

distance, and albedo) and then concatenate the features as
inputs for GAN-based methods. Moreover, we apply the adver-
sarial loss to improve the original PBR-Net, named improved
PBR-Net, to demonstrate that the advantages of our method
stems not only from the real dataset but also from the designed
generator. We present the results of two versions of PBR-
GAN: PBR-GAN† trained on the real dataset consisting of
1,082 images, and PBR-GAN‡ trained on the real dataset
comprising 2,000 images. Compared to the other six methods,
the PBR-GAN achieves the best scores on average, showing a
significant improvement over other GAN-based methods and a
considerable improvement over PBR-Net and improved PBR-
Net. While the improved PBR-Net has slightly higher scores
than the original PBR-Net, the most significant improvement is
observed in the FID score because the introduction of adver-
sarial loss helps the network generate results more closely
resembling real images. However, the overall performance of
the improved PBR-Net is still inferior to the PBR-GAN.

C. Qualitative Comparisons

We present the qualitative comparisons of PBR-GAN and
the aforementioned learning-based methods in Fig. 7.
pix2pix [48] is designed for image-to-image translation,
learning the transformation between input and correspond-
ing ground truth, while other GAN-based methods [49],
[50], [51], [52] focus on translation between two domains.
Results in Fig. 7 clearly demonstrate that the GAN-based
methods generate desired structural information sometimes but
produce unavoidable artifacts. PBR-Net is recently proposed
for imitating physically based rendering with CNN, which
recovers the indoor scene more reasonably but fails to detect
the illumination variation. In the first case in Fig. 7, the light
source locates on the right side, and our method generates
the highlight in the cupboard (blue arrow) and shadow after
the coffee machine (red arrow) more obviously. In the second
case, the light source locates in the front of the scene, and the
proposed method learns the shadow generated by the book
and the cabinet more clearly (red arrows). In the third scene,
there is a window located on the left of the scene, therefore
producing the cast shadow (red arrow) in the wall, which is
learned by our PBR-GAN merely. Moreover, only our method
can produce the cast shadow generated by the window in the
fourth scene (red arrows). In the last example, the PBR-Net
generates images with non-uniform color on the white wall
and the lamp, while the PBR-GAN produces results with fewer
artifacts and uniform color.

In order to exhibit the improvements compared to PBR-Net,
we provide additional comparison results with PBR-Net [2] in

Fig. 8. In the first case in Fig. 8, the proposed method gen-
erates the highlight near the window (blue arrows) and learns
the correct illumination variation on the sofa, while PBR-Net
produces an inverted highlight and shadow (red arrows). The
phenomenon also appears in the second case, which is possibly
due to the incorrect prediction of the light source. In the
last three scenes, our method learns the cast shadow more
obviously (green arrows). Moreover, in the fourth scene, our
method can recover the details of the decoration outside the
window (blue boxes). By preserving detailed information and
simulating natural illumination variation, our method produces
results with realistic characteristics and higher quality. These
improvements are important for photo-realistic generation
tasks.

D. Comparisons With NeRF

We also conduct the comparison with recent popular
NeRF [13] in Fig. 9. We capture dozens of images of one
scene to train a forward-facing NeRF and set the test pose
to generate novel viewpoints for comparison. While NeRF
is capable of reconstructing low-frequency geometry, it falls
short in generating high-quality fine details. Furthermore,
the rendering procedure employed by neural radiance fields
involves sampling a scene with a single ray per pixel and
producing results that are blurred (green boxes) or aliased
(red boxes and arrows) when training or testing images observe
scene content at different resolutions.

E. Comparisons With the Rendering Software Results

To demonstrate the effectiveness of the proposed architec-
ture, we compare the color images generated by our network
with results produced by the software, including OpenGL [47]
and Mitsuba [1]. Fig. 10 shows the comparison results.
OpenGL [47] cannot reconstruct the color and illumination
variation of the scenes (Fig. 10 (a)), while the results of
Mitsuba [1] are noisy (Fig. 10 (b)). Mitsuba can produce
clear images with realistic color and reasonable illumination
variation sometimes. However, the ideal rendering process
requires a significant amount of time. The generated images
of Mitsuba tend to be noisy when suffering from complicated
scenes and insufficient rendering time. In contrast, the pro-
posed PBR-GAN can generate satisfactory results (Fig. 10 (c))
while significantly reducing the processing time.

F. Computational Times

The computational times for generating images with size
360×480 on the test set are reported in Table III. We first show
the computational times on an i7, 4 cores CPU. For OpenGL
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Fig. 7. Comparisons with pix2pix [48], CycleGAN [49], CartoonGAN [50], StarGAN [51], Hneg-SRC [52] and PBR-Net [2]. PBR-GAN focuses on the
highlight (blue arrow) and shadow (red arrows) regions, and gets results with fewer artifacts (left case) and a uniform color (right case). Our method is more
effective for handling the illumination variation and produces more realistic results. These improvements are important for photo-realistic rendering tasks.

and Mitsuba, we report the average rendering time from a
3D scene to a viewpoint. OpenGL renders scenes rapidly
and spends about 0.041s, however, it cannot reconstruct the
color and illumination variation. The Mitsuba can render

images with more realistic details, but it takes a long time.
The PBR-Net and PBR-GAN both cost approximately 11s
to combine five inputs into the color output. The number
in corresponding brackets are the total times, which first
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Fig. 8. More comparison results with PBR-Net. The proposed PBR-GAN generates the highlight (blue arrows) and cast the shadow (green arrows) more
obviously. Moreover, PBR-GAN learns correct illumination variation in the sofa, while the PBR-Net produces inverse highlight and shadow (red arrows).

Fig. 9. Comparison results with NeRF [13]. (a) The new viewpoint of NeRF.
(b) Color image generated by PBR-GAN. (c) Ground truth image.

generate the five inputs from a viewpoint (the pre-computation
process) and then combine them into the color image (the
inference process). The pre-computation process takes approx-
imately 4.5s. The generation of normal, depth, and albedo
images spends 2s, while the generation of panoramic intensity
and panoramic distance involves a simple equirectangular
reprojection of a unit sphere to a 2D regular image, costing
about 2.5s. The speed of PBR-GAN with pre-computation is
still much faster than Mitsuba. We then exhibit the inference
time of different learning-based methods on an NVIDIA RTX
2080Ti GPU. We use the same inputs for PBR-GAN and
the learning-based comparison methods (except for NeRF).
As for the comparison methods, we first apply three identical
convolution blocks to extract the features of five inputs and
then concatenate these features as their inputs. After training

Fig. 10. Comparison results with the rendering software. (a) Color image
generated by the OpenGL [47]. (b) Color image rendered by the Mitsuba [1].
(c) Color images generated by the proposed method.

converged models of the comparison methods, the right part
of Table III reports the average inference times on the test set
when combining five images with size 360 × 480 to generate
the photo-realistic images. pix2pix [48] and StarGAN [51] are
the fastest algorithms due to their simple network architecture.
NeRF [13] is much slower than other methods due to the
volume rendering process. The proposed method is a bit slower
than PBR-Net [2]. It is recommended to invest some additional
computational time in incorporating a useful encoder and
adding a light decoder to achieve better performance.
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TABLE IV
ABLATION EXPERIMENTS OF DIFFERENT COMPONENTS. RED INDICATES THE BEST PERFORMANCE

Fig. 11. Ablation study of the shading loss Lshading . (a) Results without
the shading loss. (b) Results with the shading loss. (c) Ground truth images.

Fig. 12. Ablation study of the adversarial loss LGAN. The top row and
the bottom row show the results when we remove and retain the LGAN,
respectively.

G. Ablation Studies

We conduct several ablation studies of different components
to understand how these main modules work. Fig. 12, Fig. 11,
Fig. 13 and Table IV display the ablation results.

1) Ablation Study of the Adversarial Loss: We first perform
some experiments to illustrate the importance of adversarial
loss. As shown in the third row in Table IV, removing the
adversarial loss LGAN apparently degrades the results, which is
consistent with the qualitative result in Fig. 12. The top row of
Fig. 12 shows the results when we remove the real dataset and

the adversarial loss, while the bottom row displays the results
with the adversarial loss included. The real dataset includes
diverse indoor scenes, which makes the network sensitive
to real distribution, and three cases in Fig. 12 indicate the
importance of the collected dataset and the adversarial loss.
Our method with the real dataset can preserve the details
better in Fig. 12 (a) because the collected real images include
semantic information outside the windows and the doors, while
the synthetic dataset loses these details. Moreover, the images
of the synthetic dataset are almost daytime scenes, whereas
the real dataset includes diverse scenes, ranging from daytime
to nighttime, which helps the network imitate the night scenes
better (Fig. 12 (b)). Results in Fig. 12 (c) demonstrate the
architecture can learn that the light often comes from the doors
or the windows with the help of real data.

2) Ablation Study of the Shading Loss: The shading loss
controls the overall illumination condition of the generated
images. As shown in Fig. 11, with the shading loss, the
top case can learn that the light comes from the right side,
and the bottom case is influenced by the front light source.
The overall illumination condition of the generated image
is more similar to the ground truth with the help of the
shading loss. The quantitative values in the fourth row in
Table IV also demonstrate the importance of the shading loss.
The generated results with better overall illumination exhibit
greater similarity to photo-realistic images.

3) Ablation Study of the Light Decoder: The light loss
is complementary to the shading loss, which concentrates
more on the special regions and generates better highlight
and shadow effects. We perform two ablation experiments to
demonstrate the importance of the light decoder DL and light
mask Olm . The light decoder is first removed, which means
the light loss Llight and the light map Olm are invalid, and
the PBR loss LPBR is adopted as the conventional perceptual
loss. The quantitative results when removing the light decoder
in Table IV (the fifth row) are worse than the complete PBR-
GAN. Fig. 13 (a) displays the qualitative results without the
light decoder, which are apparently inferior to the results
with the light decoder in Fig. 13 (b). The results with the
light decoder have similar illumination to the ground truth.
Moreover, the light maps generated by the light decoder help to
recover the shadows generated by the window and black table
legs (red arrows). The light decoder focuses on the illumina-
tion variation and therefore obtains more realistic results. The
light mask Olm generated by the light map is then evaluated.
The light decoder DL and the light loss Llight work normally.
However, the generated light maps do not provide information
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Fig. 13. Ablation study of the light decoder DL . (a) Results without the
light decoder. (b) Results with the light decoder. (c) Ground truth images.

TABLE V
ABLATION STUDY ON THE LPIPS THRESHOLD OF THE REAL DATASET

to get the light masks and the PBR loss is a conventional
perceptual loss. The quantitative results in the sixth row of
Table IV also indicate a performance decrease compared to
the complete PBR-GAN. Note that, the performance without
light mask Olm (the sixth row) is similar to the results without
light decoder DL (the fifth row) because training the light
decoder without light map information provided to the loss
cannot improve the results significantly.

4) Ablation Study of the LPIPS Threshold and the Number
of Real Images: After collecting the real dataset, LPIPS
similarity [57] is applied to identify and remove similar
images. We empirically select suitable thresholds of LPIPS
(lpipst ) to filter the collected real images. We conduct the
ablation study and report the SSIM and FID scores when
selecting different thresholds and filtering different numbers
of images in Table V. The second row in Table V indicates
one collected dataset without any post-processing. The third
row shows the results when setting the threshold lpipst to 0.1,
which may filter the similar images and reserve as many as
possible images with diversity. The last row exhibits the results
when setting the threshold to 0.5. The running time of each
iteration increases and the performance decreases with the
larger threshold. When setting the threshold lpipst to 0.1, the
model can achieve the balance of effectiveness and efficiency.

We then optimize the search keywords and add some adjec-
tives, such as nighttime bedroom and vintage parlor, to expand
the search scope. In total, we collect 11,035 images from the
Internet. After applying two filtering operations, including the
LPIPS similarity (lpipst=0.1) and the manual selection, the
final real dataset with 6,000 images is obtained. To explore
the impact of the number of real images, we randomly select
subsets of images and evaluate the FID score and iteration
time for each subset. Figure 14 illustrates the corresponding

Fig. 14. The variation trend of FID score and iteration time when selecting
different numbers of real images.

Fig. 15. The generated light maps of outdoor scenes, which may fail to
capture accurate illumination variations due to the discrepancies in lighting
conditions between indoor and outdoor environments.

variation trend. It is evident that as the number of real images
increases, the iteration time also increases, while the FID
score decreases. However, the tendency of FID score from
2,000 to 6,000 is gentle. As for PBR task, increasing the num-
ber of images will lead to model improvement but the number
between 1,000 and 2,000 is the best choice to strike the bal-
ance between effectiveness and efficiency because this range
is diverse enough for the current architecture. Sometimes,
a relatively small dataset can yield satisfactory performance
while reducing training time. For example, the target datasets
in CycleGAN include approximately 200-400 images (Van
Gogh style: 400 images, Summer style: 309 images, Winter
style: 208 images), and these styles can be learned reasonably.

H. Discussion

While our method improves upon other methods and
achieves an average improvement rate of 8%, it is limited by
the scenario and may not perform well on outdoor scenes.
The predicted indoor light map with three colors indicates
the light source and the light irradiation areas, shading, and
uniform texture regions, respectively. However, the outdoor
light map deviates from the rules and cannot concentrate on the
illumination variation. The significant discrepancies in lighting
conditions between indoor and outdoor environments pose
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challenges. As shown in the first case in Fig. 15, the white
color dominates all the outdoor regions, while the illumination
variation locates in indoor regions (red arrow). Focusing on
the illumination variation is beneficial for generating photo-
realistic outputs. Therefore, the illumination variation and cast
shadow may easily be ignored and produce non-photo-realistic
results. We consider this as a limitation and a future work.
We plan to improve the light decoder to adapt to all scenarios,
thus broadening its range of applications.

V. CONCLUSION

We have proposed PBR-GAN, an end-to-end GAN-based
method to achieve high-quality physically based rendering
effectively. The proposed method first applies the generative
adversarial network to speed up the photo-realistic rendering
by simulating the majority of expensive components efficiently
and then designs specific modules to deal with the illumination
variation. The architecture includes two encoders and two
decoders, among which two encoders combine the shading
and reflectance information from the rendering sources and the
two decoders recover the photo-realistic images and the light
maps, respectively. In addition to the necessary conventional
adversarial loss, we introduce the shading loss to preserve
the shading information, the light loss to obtain accurate
light maps, and the novel mask-based PBR loss that utilizes
the light map as a mask to constrain the generated color
images, enabling the network to focus more on the highlight
and shadow regions. Comprehensive experiments have demon-
strated the effectiveness of the PBR-GAN.
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