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Abstract— The paper proposes a method to effectively fuse
multi-exposure inputs and generate high-quality high dynamic
range (HDR) images with unpaired datasets. Deep learning-based
HDR image generation methods rely heavily on paired datasets.
The ground truth images play a leading role in generating
reasonable HDR images. Datasets without ground truth are hard
to be applied to train deep neural networks. Recently, Generative
Adversarial Networks (GAN) have demonstrated their potentials
of translating images from source domain X to target domain Y
in the absence of paired examples. In this paper, we propose a
GAN-based network for solving such problems while generating
enjoyable HDR results, named UPHDR-GAN. The proposed
method relaxes the constraint of the paired dataset and learns the
mapping from the LDR domain to the HDR domain. Although
the pair data are missing, UPHDR-GAN can properly handle
the ghosting artifacts caused by moving objects or misalignments
with the help of the modified GAN loss, the improved discrimi-
nator network and the useful initialization phase. The proposed
method preserves the details of important regions and improves
the total image perceptual quality. Qualitative and quantitative
comparisons against the representative methods demonstrate the
superiority of the proposed UPHDR-GAN.

Index Terms— Multi-exposure HDR imaging, generative adver-
sarial network, unpaired data.

I. INTRODUCTION

THE dynamic range of commercial imaging products is
lower than natural scenes. Most digital photography sen-

sors cannot acquire the irradiance range that is wide enough.
High dynamic range (HDR) imaging techniques have been
introduced because they can overcome such limitations and
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generate images with a wider dynamic range. The specialized
hardware device [1] has been introduced to directly obtain
HDR images, but it is usually too expensive to be widely
adopted. An optional strategy is to merge a stack of images
with different exposures to produce an informative output [2].

Since its first introduction in 1990s, HDR imaging tech-
niques evolve quickly, whose applications include saliency
detection [9] and video compression [10]. Some HDR imaging
methods are first proposed to generate the results through
two steps: (1) reconstructing an HDR image; (2) applying
the tone mapping algorithms for display [11]. These methods
are not suitable for handling dynamic scenes because they
do not consider the misalignments between different input
images. Subsequently, Oh et al. proposed a rank minimization
algorithm to detect outliers for HDR generation and align input
images [12]. Szpak et al. introduced the Sampson distance to
estimate the homography matrix and applied the homography
to align input images [13]. These methods work well when
the inputs are aligned properly. However, completely aligning
the multi-exposure images is challenging. The aforementioned
methods may produce ghosting or blurring artifacts if the
alignment process fails to work. To alleviate the problem,
some patch-based methods are proposed to generate fully
registered image stacks. Sen et al. considered the HDR recon-
struction as an optimization that includes the alignment and
reconstruction [4]. Hu et al. built new image stacks using a
variant of PatchMatch to handle saturated regions and avoid
the ghosting artifacts [3]. However, the patch-based methods
lack robustness and cannot produce satisfactory results for
complicated scenes.

Inspired by the convolutional neural network (CNN), some
learning-based methods are introduced to imitate the fusion
process. Kalantari et al. [5] and Wu et al. [6] adopted
similar network architecture but different in the pre-processing.
Kalantari et al. [5] applied the flow-based pre-processing
to align the inputs, while Wu et al. [6] embedded the
alignment process into the network. Yan et al. [14] and
Liu et al. [15] proposed the attention-guided network to tackle
the misalignment and handle the saturation simultaneously.
However, due to the unreliability of the image registration,
these methods also suffer from unavoidable artifacts. There are
also some GAN-based methods that introduce the adversarial
loss to improve the unsatisfactory regions by creating realistic
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information [8]. Different techniques are introduced to
improve the fusion performance. However, the most important
problem of deep learning-based fusion methods is that they
rely heavily on paired inputs and ground truth.

To relax the constraint of the dataset, we propose a
GAN-based fusion method to optimize the network using
unpaired dataset, named UPHDR-GAN. First, compared to
famous single-image enhancement methods [16]–[19] and
some recent GAN-based image fusion methods [8], [20],
[21] that are trained on paired datasets, the proposed method
trains unpaired datasets and transfers the multi-exposure LDR
domain images to HDR domain images. The datasets of
common deep learning-based methods require the inputs and
the ground truth images. However, obtaining HDR ground
truth images is difficult and most existing datasets just include
the input images. Some recent datasets [5] generate the ground
truth images according to the inputs, but their variety of
the scenes is so limited. Training the model on unpaired
dataset can relax the constrain of paired training and broaden
the application of the dataset. Second, unlike some methods
that are designed for unpaired datasets mainly concentrate on
processing single-input, our method is a multi-input method
with the consideration of moving objects. For example, Cycle-
GAN [22] is designed for training unpaired datasets and
processing single-input. The CycleGAN is not suitable for
fusing multi-exposure inputs because the forward process
(composing multi-exposure images into an HDR output) may
be learned properly, while the backward process (decomposing
the HDR image into the multi-exposure images) may not
converge successfully. The forward process and the backward
process in CycleGAN are interactive. Therefore, the forward
process will be influenced if the backward process cannot work
satisfactorily. Even considering multi-input, simply concate-
nating multi-exposure inputs will result in severe ghosting.

In contrast, the UPHDR-GAN designs specific modules to
solve such problems and produce informative HDR outputs
with fewer ghosting artifacts. First, we introduce the initial-
ization phase to maintain the content information between
the reference and the output. The initialization phase totally
avoids ghosting because it just transfers the reference images
to HDR domain. Second, we improve the common adver-
sarial loss to generate images with sharp edges (Fig. 2 (b)).
Third, when fusing the information from the under- and over-
exposure images, the min-patch training module (Fig. 2 (c)) is
adopted to detect and handle the ghosting artifacts. The com-
parison results with several de-ghosting methods are shown
in Fig. 1. The comparison methods have diverse artifacts,
while our UPHDR-GAN handles the dynamic objects properly
with the balance of the HDR transformation and content
preservation.

In summary, the main contributions include:
• We proposed a GAN-based multi-exposure HDR fusion

network, which relaxes the constraint of paired training
dataset and learns the mapping between input and target
domains. To our best knowledge, this work is the first
GAN-based approach for unpaired HDR reconstruction.

• The proposed method can not only be trained on unpaired
dataset but generate HDR results with fewer ghosting

Fig. 1. LDR images with different exposures are shown in (a), and our
result is shown in (b). (c) Result of Hu et al.’s method [3]. (d) Result of
Sen et al.’s method [4]. (e) Result of Kalantari et al.’s method [5]. (f) Result
of Wu et al.’s method [6]. (g) Result of Yan et al.’s method [7]. (h) Result of
Niu et al.’s [8]. The proposed UPHDR-GAN handles moving objects better
and generates results with fewer ghosting artifacts.

artifacts. We apply the modified GAN loss, the initial-
ization phase and the min-patch training module to avoid
ghosting and improve the image quality.

• We provided comprehensive comparisons with several
leading methods. The results demonstrate that the pro-
posed UPHDR-GAN outperforms existing methods and
works well on challenging cases.

II. RELATED WORKS

A. HDR Imaging

HDR imaging has been extensively researched over the
past decades. Existing HDR imaging methods can be mainly
divided into two groups, static and dynamic scene methods.

a) Static scene methods: Debevec et al. first proposed
to fuse different exposure images to an HDR image [23].
The original approaches produced spectacular results for static
cameras and static scenes. Some variants are then intro-
duced by generating disparity maps or using neural net-
works [24], [25]. Sun et al. computed the disparity map
first and applied them to compute the camera response func-
tion [25]. Hashimoto et al. developed hard-to-view or non-
viewable features and content of color images by a new tone
reproduction algorithm [24]. There are also numerous static
fusion methods that do not generate HDR outputs but directly
obtain informative LDR results [26]–[29]. Li et al. incorpo-
rated the edge-preserving factors into the fusion method to
preserve the details [28]. Wang et al. [29] presented a unified
multi-scale densely connected fusion network to fuse the
infrared and visible images. However, due to the lack of an
explicit detection for the dynamic objects, the aforementioned
methods are unaware of any motion in the scene, so as to be
suitable for static scenes only.

b) Dynamic scene methods: Many de-ghosting
algorithms are introduced to solve the problem that static
methods are not applicable for many scenes [30], [31]. Some
methods compute weight maps of input images and eliminate
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Fig. 2. The proposed method seeks to generate high-quality HDR results with unpaired datasets. The generator first extracts features from multi-exposure
inputs using identical down-convolution blocks. The encoder features are then concatenated to be sent to the residual blocks. The decoder recovers the
features to informative HDR images through up-convolution blocks. The discriminator distinguishes the generated and the real HDR images alternately. The
min-patch module concentrates on the strange part of fake images and helps to avoid ghosting artifacts.

the moving contents together [32], [33]. Complementary,
some methods merge images first and resolve ghosting of
the results [34]. The misaligned pixels often appear in such
methods so that they usually fail to fully utilize available
content to generate HDR images. There are also some
methods that are applying energy optimization to maintain
image consistency or model the noise distribution of color
values [35]. Besides, some more complicated methods based
on optical flow [2] or patch-based correspondence [3], [4] are
proposed to achieve more accurate image registration. Li et al.
applied the optical flow to roughly align the multi-exposure
images which are captured by hand-held cameras and then
used the patch-based optimization to obtain full-aligned
inputs [2]. Sen et al. integrated alignment and reconstruction
in a patch-based energy minimization through an HDR image
synthesis equation [4]. Hu et al. built new image stacks using
a variant of PatchMatch to handle saturated regions and avoid
the ghosting artifacts [3]. Although flow-based methods are
able to align images with complex motions, they usually suffer
from deformations in the regions with no correspondences,
due to occlusions caused by parallax or dynamic contents.
On the other hand, patch-based methods sometimes produce
excellent results, while they are less efficient and usually fail
in large motions and saturated regions. To overcome above
issues, some deep learning approaches have been developed
recently [5]–[7], [14]. The deep learning methods can
obtain information from the training process to compensate
for image regions. However, each of these methods only
addresses part of the issues and needs paired data to optimize
the network. We propose UPHDR-GAN to comprehensively
handle existing issues, including solving ghosting artifacts
and relaxing the constrain of paired data.

B. GAN-Based Fusion

GAN was proposed by Goodfellow et al. [36], which
has achieved impressive results in image blending [37],

image generation [38], [39], image style transfer [40], and
solving jigsaw puzzles [41]. Generally, the inputs of common
GAN-based methods are noise or a single image. Obtaining
information from multi-inputs is also an important research
topic [42], [43]. Guo et al. introduced a GAN-based multi-
focus image fusion system, which utilized the generator to
produce desired mask maps [44]. Huang et al. presented an
adaptive weight block to determine whether source pixels are
focused or not. [45] Li et al. proposed AttentionFGAN that
applies the attention mechanism into the GAN framework and
uses the attention features to fuse the infrared and visible
image [46]. Recently, there are some GAN-based methods
are proposed to handle multi-exposure images [8], [20], [21].
Xu et al. introduced the self-attention mechanism to solve the
luminance variety of multi-exposure images [20]. Yang et al.
fused the over- and under-exposed image by increasing the
number of the discriminators [21]. Niu et al. incorporated the
adversarial learning and a reference-based residual merging
block to solve large motions [8]. However, these GAN-based
methods rely heavily on paired training datasets so that their
performances are greatly limited. In comparison, we pro-
pose UPHDR-GAN to fuse multi-exposure inputs, which is
compatible with unpaired datasets, so that the flexibility and
robustness of our proposed network are significantly improved.

III. METHOD

We propose a GAN-based multi-exposure fusion frame-
work, which is the first method designed for handling HDR
imaging tasks with unpaired datasets. Like common GAN
framework, the generator G transforms inputs of source
domain to desired outputs with the characteristics of the
target domain, while the discriminator D distinguishes the
target domain images from the generated ones to optimize
G. Our collected dataset consists of scenes with and without
ground truth. By disorganizing the correspondence between
the inputs and ground truth, the unpaired training set is
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TABLE I

DETAILED PARAMETER SETTINGS OF THE NETWORK, IN WHICH
‘ES’ INDICATES ELEMENT-WISE SUM

obtained. To better describe the framework, two domain data
are collected, including (1) the source LDR domain X , which
is constituted by a wide diversity of multi-exposure sequences
x = {x1, x2, x3}, and (2) the target domain Y , which consists
of a collection of HDR images. We denote their data distri-
butions as x ∼ pdata(x) and y ∼ pdata(y), respectively. The
proposed UPHDR-GAN can generate HDR images with fewer
ghosting artifacts in the absence of paired datasets.

A. Network Architecture

UPHDR-GAN is an images-to-image task with three inputs
and one output. The structure of UPHDR-GAN is illustrated
in Fig. 2. The detailed layer configurations of the network
architecture are displayed in Table I. To improve the efficiency,
We crop 256 × 256 overlapped patches from the training
images with a stride of 64 rather than optimizing the model
with the full-size images. The encoder contains three branches
and the input size of each branch is 2562 × 6, which is the
concatenation of the inputs x = {x1, x2, x3} and their mapped
HDR images Hm = {H1, H2, H3}. Hm is obtained using a
simple gamma encoding:

Hi = xi
γ

ti
, γ > 1 (1)

where xi is the input image and ti is the corresponding
exposure time. The LDR images and the mapped HDR images
are complementary, where the former one detects the satu-
ration and misalignments, and the latter one facilitates the
convergence of the network across LDR images.

After getting the HDR output Ho, we add a μ-law [5]
post-processing to refine the range of generated HDR images
because computing the loss functions on the tone-mapped

HDR images is more effective:
T (Ho) = log(1 + μHo)

log(1 + μ)
(2)

where Ho is the output HDR image and real HDR image
respectively, μ represents the amount of compression and is
set to 5,000 in our implementation.

1) Generator: The generator network is composed of the
encoder, the residual blocks and the decoder. Specifically, the
encoder consists of three convolutional blocks: E1, E2 and
E3, as described in Table. I. Useful signals are extracted in
the encoder process and used for following residual blocks
to explore high-level features. Two transposed convolutional
blocks (D1 and D2) and a convolutional layer (D3) constitute
the decoder to recover the features to output images.

2) Discriminator: The discriminator is complementary to
the generator. PatchGAN [47] is applied to classify the image
patch rather than a full image. We crop 70 × 70 overlapped
patches from generated HDR images and real HDR images to
train the patch-based discriminator. However, not all regions in
the patch contribute to the discriminator optimization during
training. If the generator produces images with regions that are
strange and different from the real images, the special regions
can be considered as undesirable ghosting artifacts. Paying
more attention to the strangest parts is essential.

3) Min-Patch Module: We introduce the min-patch train-
ing module (Fig. 2 (c)) at the end of the PatchGAN. The
implementation of min-patch training is to add an optional
minimum pooling layer to the final output of the discrimi-
nator [43]. We define F to represent the features after the
‘C5’ convolutional layer in the discriminator. When training
the discriminator, conventional PatchGAN is applied and the
network is optimized with F . When training the generator,
we add the minimum pooling layer after the ‘C5’ convolutional
layer. The features after the minimum pooling layer (Fpool)
are used to compute the loss. The generator is optimized with
Fpool , which plays a vital role in detecting the most important
parts of the generated images, such as the error parts or strange
parts. The discriminator distinguishes the real image from the
fake image using common PatchGAN and is trained with
F . In our implementation, the size of features F after ‘C5’
convolutional layer is 64 × 64. We use 16 × 16 minimum
pooling for the min-patch training module and output features
Fpool with size 4 × 4 to optimize the generator.

B. Loss Function

As GAN is a min-max optimization system, the proposed
UPHDR-GAN optimizes the following equation to strike a
balance between the generator and the discriminator:

G∗, D∗ = arg min
G

max
D

L(G, D) (3)

Based on HDR imaging properties, the objective function
is designed to have the following two items: (1) the GAN
loss LGAN(G, D) to achieve desired transformation to convert
multi-exposure inputs into HDR outputs; (2) the content loss
Lcon(G) to preserve the image semantic information during
HDR transformation. The full loss function is:

L(G, D) = LGAN(G, D) + wcon Lcon(G) (4)
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Fig. 3. Two examples of the blur dataset. (a) The tone-mapped HDR images.
(b) Blur results of (a).

where wcon is a hyper-parameter to control the relative impor-
tance of the content loss, so as to balance the effects of
transformation and content preservation.

1) GAN Loss: The GAN loss helps G to generate results
similar to the target domain images in the absence of ground
truth, and confuses D using the generated HDR images and
real HDR images. However, applying vanilla GAN loss is
insufficient, which cannot preserve the edge and boundary
information, while such information is important for HDR
images. For this reason, Chen et al. [48] proposed to confuse
D with a blur dataset, which has been proven useful for the
style transformation. The blur dataset is considered as fake
images to drive the generator to produce images with clear
edges. Similarly, we also add a blur HDR dataset to facilitate
G to generate high-quality output. Specifically, for the target
images {y j } j=1,...,M ∈ Y , we utilize Gaussian filter with kernel
size 5 × 5 to remove their clear edges and generate the blur
dataset {b j } j=1,...,M ∈ B . We show two examples of the blur
dataset in Fig. 3. The characteristic of blur edges should be
avoided in generated images. Selecting the blur dataset as fake
images can help the network produce images without blur
edges. In other words, there are three categories that need
to be classified by the discriminator: G(x), b and y, among
which the generated image G(x) and the blurred HDR image
b are fake inputs, and the real HDR image y is real input. The
modified adversarial loss is designed as:

LGAN(G, D) = Ey∼pdata(y)

[
log D(y)

]

+ Ex∼pdata(x)

[
log(1 − D(G(x))

]

+ Eb∼pdata(b)

[
log(1 − D(b))

]
(5)

We adopt the negative form of the modified adversarial
loss in order to use the min-patch training module properly.
Conventional adversarial loss minimizes the generator loss
while maximizing the discriminator loss. Now, we train the
generator to maximize the loss function and the discriminator
to minimize the loss function. The inverse optimization is
specifically designed for the min-patch training module, which
is only used when training the generator. The modified genera-
tor loss tries to maximize the discriminator values after passing

the minimum pooling. The lower discriminator outputs imply
the fake patches, which may represent the blur or ghosting
regions. The modified generator loss can concentrate on these
strange parts by maximizing the lower discriminator values.

2) Content Loss: The GAN loss just ensures the generator
produces images that are similar to the real HDR domain
images. The semantic information preservation cannot be
guaranteed by using adversarial loss alone. Adding additional
constraints for semantic consistency is necessary. Generally,
we select the image with middle-exposure as the reference
image, and align images with under- and over-exposure to the
reference. The content loss is defined to constrain the paired
middle-exposure input x2 and the generated result G(x) about
the semantic similarity. Instead of using common MSE loss
function, the perceptual loss [49] is applied to constrain the
content differences, which is formulated as:

Lcon(G) = Ex∼pdata(x)

[||V GGl
(
G(x)

) − V GGl
(
x2

)||1
]

(6)

where the selection of layers l is important. Larger l will
extract high-level features. We utilize the features of the
‘conv4_4’ layer from the VGG19 network in our method.

The hyper-parameter wcon is added to balance the adver-
sarial loss and content loss. The adversarial loss works on
unpair domain translation, while the content loss constrains
pair content preservation. A larger wcon destroys the domain
transformation and generates results that do not like desired
HDR images due to the excessive content preservation from
inputs, while a small wcon concentrates more on unpaired
domain translation and the semantic information of the refer-
ence image will be destroyed. In order to achieve the balance,
wcon is empirically set to be 1.5 at the initial stage. After the
training process becomes increasingly stable and the content
information from the reference is maintained reasonably, wcon

is gradually decreased to achieve the domain transformation.
wcon is described as:

wcon = wcon × 0.96�Ne/10� (7)

where Ne is the number of epochs, which is set to 200 in our
implementation.

IV. EXPERIMENTS

The datasets and implementation details are first illustrated
in Section IV-A. Comprehensive experiments are then con-
ducted, including quantitative comparisons (Section IV-B),
qualitative assessments (Section IV-C) computational com-
plexity (Section IV-D), results on sequences captured by
hand-held smartphones (Section IV-E), and ablation studies
(Section IV-F). Specifically, we first compare the proposed
method with several methods that can only be applied to fuse
static inputs [20], [26], [27], [50]–[52], and then compare
with several classic de-ghosting methods, including two patch-
based methods [3], [4], two deep neural network (DNN) merg-
ers with and without optical flow registration, respectively [5],
[6], a non-local network [7], and a GAN-based method [8].
We use the under- and the over-exposed image to produce the
results of Xu et al.’s method [20] because their method only
takes two inputs.
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TABLE II

DETAILED SOURCE INFORMATION OF OUR DATASET

Fig. 4. An example of the unpaired training dataset, among which three images on the left are the input images, while the rightmost image is the target
image in the HDR domain.

A. Datasets and Implementation Details

The datasets of common deep learning-based multi-
exposure fusion methods usually include multi-exposure input
images and ground truth HDR image. However, obtaining
corresponding ground truth HDR images is difficult and most
existing datasets just include the input images. Moreover,
many existing datasets only include static scenes. Although
some of them include moving objects, the dynamic scenes
occupy a small proportion. Kalantari et al. introduced the
first HDR dataset, however, the variety of the scenes is so
limited [5]. Our method relaxes the constraints of paired input
and learns the transformation from the source LDR domain
to the target HDR domain. The network is trained to fuse
multi-exposure inputs in the absence of corresponding ground
truth. We have collected a total of 270 groups of images from
various sources, as seen in Table II for the detailed informa-
tion. The ground truth images in the test set are required to
compute the quantitative scores. The image sequences from
Tursun et al. [53] and Fairchild do not contain the ground
truth images. Therefore, we randomly select dynamic test
scenes from other three datasets. Kalatari et al.’s dataset [5]
only contains dynamic scenes. Twenty static test scenes are
randomly selected from remainder two datasets. As for twenty
dynamic scenes, 6 sequences originate from the HDReye
dataset, 4 sequences originate from the EmpaMT dataset and
10 sequences originate from the Kalantari et al.’s dataset [5].
As for twenty static scenes, 11 sequences originate from the
HDReye dataset and 9 sequences originate from the EmpaMT
dataset. Finally, 40 groups of images are selected as the test set
and 230 groups of images are selected as the training set. The
test set and the training set are completely distinct. Some of
the sequences include approximately 10 multi-exposure inputs,
from which we select 3 images with minimum, medium and
maximum exposure as training inputs.

By disorganizing the correspondence between the inputs and
ground truth, the unpaired training set is obtained. An example
of the unpaired training dataset is shown in Fig. 4. The training
images are first aligned using a homography before they are

sent to the network, which is more effective and helps the
network concentrates more on the moving objects. All training
images are resized to 1000 × 1500. Then, we crop 256 ×
256 overlapped patches from the training images with a stride
of 64 to improve the training efficiency. The pre-processing
will create 54,240 patches. After that, we utilize the data
augmentation, including the flipping and rotation to enrich the
training data by 8 times. Finally, the training set consists of
433,920 training patches, which is large enough to encompass
all the possibilities and train our architecture.

We implement UPHDR-GAN in PyTorch and the model
is trained on an NVIDIA RTX 2080Ti GPU for 200 epochs.
The entire training process costs 2 days on average. Adam
optimizer is selected to iterate the network. The learning rate
of the generator and the discriminator is set to 2.0×10−4

and 1.0×10−4, respectively. We introduce an initialization
phase to help the convergence and guide the network to
learn the correct domain transformation. In initialization, the
generator is designed to reconstruct the semantic information
of middle-exposure input and ignore the domain translation.
For this purpose, the generator G is pre-trained using merely
the content loss Lcon . Two examples are presented in Fig. 5
that include the input images and the results after pre-training.
Ablation experiments of the initialization phase are also per-
formed in Section IV-F. The initialization phase contributes
to controlling the over-exposed regions and enriching the
overall colors. Moreover, the network properly reconstructs the
content information of middle-exposure input. Since we select
the middle-exposure image as the reference, the initialization
also helps to avoid ghosting.

B. Quantitative Comparisons

Although the proposed UPHDR-GAN can efficiently fuse
multi-exposure images without ground truth, we select the
test set for quantitative comparisons from paired datasets that
include multi-exposure inputs and HDR images. As the ground
truth is available, we can conduct various quantitative evalu-
ations and comparisons. As for the comparisons with static
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TABLE III

QUANTITATIVE COMPARISON OF UPHDR-GAN WITH THE COMPARISON METHODS ON TWENTY STATIC SCENES. THE LEFT PART SHOWS THE COM-
PARISON RESULTS WITH METHODS THAT ARE SUITABLE FOR STATIC SCENES, AND THE RIGHT PART REPRESENTS THE COMPARISON RESULTS

WITH METHODS THAT ARE BOTH SUITABLE FOR STATIC AND DYNAMIC SCENES. RED COLOR INDICATES THE BEST PERFORMANCE AND

BLUE COLOR INDICATES THE SECOND-BEST RESULTS. THE BEST RESULTS OF STATIC METHODS ARE UNDERLINED

Fig. 5. Results of the initialization phase. (a) The middle-exposure inputs.
(b) The generated results after the pre-training with 10 epochs.

scenes, we compute four metrics, including the PSNR val-
ues [54], the SSIM values [55], the HDR-VDP-2.2 scores [56]
and the tone mapped image quality index (TMQI) scores [57].
The PSNR value approaches infinity as the MSE approaches
zero and a higher PSNR value provides a higher image quality.
The SSIM is considered to be correlated with the quality
perception of the human visual system [55]. HDR-VDP-2.2 is
a calibrated objective method that can tackle both HDR and
LDR signals [56]. The TMQI score combines the multi-scale
signal fidelity measure and a naturalness measure to evaluate
the tome mapped images [57]. As for the comparisons with
dynamic scenes, we further compute the PU-PSNR and PU-
SSIM values [58] with 1,000 cd/m2 display, which represents
current commercial HDR display technology. The two percep-
tually uniform (PU)-encoding metrics convert absolute HDR
linear color values into approximately perceptually uniform
values and expect that the values in images correspond to the
luminance emitted from the HDR display. The higher PSNR,
SSIM, HDR-VDP-2.2, TMQI, PU-PSNR and PU-SSIM scores
indicate better image quality. The quantitative comparison
results are presented in Table III and IV.

Twenty static scenes and twenty dynamic scenes, which
include multi-inputs and corresponding ground truth, are col-
lected as the test set for quantitative comparisons. The test
set is completely distinct from the training set to ensure the
evaluation is fair. The proposed method is first compared with
several classic methods that can only be applied to fuse static
inputs [20], [26], [27], [50]–[52]. The left part in Table III

displays the quantitative comparison results with the static
methods. Some of static methods fuse multi-exposure inputs
with the absence of ground truth, and therefore resulting in
lower scores when computing the evaluation metrics between
the generated image and the ground truth. The comparison
results with several de-ghosting methods [3]–[8] on these
static scenes are then reported in the right part of Table III.
These methods are designed for handling sequences with
moving objects, which can solve the slight movements (such
as the moving leaves caused by the wind and the flowing
water) and obtain higher scores than the aforementioned static
methods. The proposed UPHDR-GAN abandons the constraint
of ground truth, but can extract information from the target
HDR dataset, hence providing results with better PSNR, SSIM,
HDR-VDP-2.2 and TMQI values on average.

Table IV exhibits the comparison results of UPHDR-GAN
with several de-ghosting methods [3]–[8] on twenty dynamic
scenes. Two patch-based methods [3], [4] generate the reg-
istered image stacks according to the patch match-oriented
optimization. Kalantari et al. [5] and Wu et al. [6] obtain
HDR results through deep neural networks. Yan et al. use
the non-local correlation to tackle the ghosting artifacts [7].
Niu et al. introduce the adversarial loss to improve the
unsatisfactory regions by creating realistic information [8].
These deep learning-based algorithms have demonstrated sig-
nificant performance advantages over patch-based methods.
However, the deep learning-based methods are not sensitive to
large motions and lack robustness. These comparison methods
focus on fusing the multi-exposure images but cannot handle
the dynamic objects well, which affects their performance.
On the contrary, the proposed initialization phase totally avoids
ghosting because it just transfers the reference images to
the HDR domain. Then, when fusing the information from
the under- and over-exposure images, the min-patch training
module helps to detect and avoid ghosting artifacts. Overall,
by incorporating the initialization phase and the min-patch
training module, our method owns superior performance.

C. Qualitative Comparisons

In this section, our method is first compared with [20],
[26], [27], [50]–[52] on static scenes (Fig. 6). The com-
parison methods are mature enough to handle images that
are static, but ignore the tiny motions, such as the moving
leaves caused by wind. The comparison methods produce
the ghosting artifacts in the left case in Fig. 6, which are
caused by the slight movements of the leaves. Some of them
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TABLE IV

QUANTITATIVE COMPARISON OF UPHDR-GAN WITH THE DYNAMIC METHODS ON TWENTY DYNAMIC SCENES. RED COLOR INDICATES
THE BEST PERFORMANCE AND BLUE COLOR INDICATES THE SECOND BEST RESULTS

Fig. 6. Visual comparisons with several representative static methods. (a) Input images. (b) Our result. (c) Result of Mertens et al.’s method [26]. (d) Result
of Li et al.’s method [51]. (e) Result of Li et al.’s method [50]. (f) Result of Paul et al.’s method [52]. (g) Result of Ma et al.’s method [27]. (h) Result of
Xu et al.’s method [20].

Fig. 7. Visual comparisons with de-ghosting methods. (a) Input images. (b) Result of Hu et al.’s method [3]. (c) Result of Sen et al.’s method [4]. (d) Result
of Kalantari et al.’s method [5]. (e) Result of Wu et al.’s method [6]. (f) Result of Yan et al.’s method [7]. (g) Result of Niu et al.’s [8]. (h) Our result. Note
that, Hu et al.’s method [3] produces noise around the building in (b). Please zoom in for details.

design specific strategies to detect and solve the dynamic
contents, such as guided filtering [50]. However, the results
are still unsatisfactory. In the right case, the static methods
suffer from the blurring artifacts around the tree. Xu et al.
solely obtained information from the under- and over-exposed
images [20], which leads to the mediocre result with color
deviation.

Fig. 7 and Fig. 8 show the qualitative comparisons against
several state-of-the-art de-ghosting methods [3]–[8]. Two
patch-based methods [3], [4] tend to generate fully registered
input image stacks, but cannot reconstruct the regions with rich
textures or large motions. Hu et al.’s method [3] generates
results with noise around the building (red arrow) in Fig. 7
and unclear edges in Fig. 8. Sen et al.’s method [4] produces
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Fig. 8. Visual comparisons with de-ghosting methods. (a) Input images. (b) Our result. (c) Result of Hu et al.’s method [3]. (d) Result of Sen et al.’s
method [4]. (e) Result of Kalantari et al.’s method [5]. (f) Result of Wu et al.’s method [6]. (g) Result of Yan et al.’s method [7]. (h) Result of Niu et al.’s [8].
(i) Zoomed-in areas of our result. The scene is challenging because there are large foreground motions between input LDR images. The proposed UPHDR-GAN
can properly deal with the motions caused by moving people.

Fig. 9. Comparisons with Niu et al.’s work [8] on scene with large motions.
(a) Input images with a moving car, which causes large motions. (b) Result
of Niu et al.’s work [8]. (c) Our result.

results with serious halo artifacts in Fig. 7 and ghosting
artifacts in Fig. 8. The deep learning-based methods can
obtain information from the training process to compensate
for image regions. However, they only perform well in one
way or another. Kalantari et al. [5] and Wu et al. [6] adopt
similar network architecture but different in pre-processing.
Kalantari et al. [5] apply flow-based pre-processing to align
the inputs, while Wu et al. [6] process the alignment and
the fusion together. The two methods suffer from similar arti-
facts, including the problematic transformation in the junction
regions of the sky and the cloud (green arrows) in Fig. 7,
and the ghosting artifacts in Fig. 8. Yan et al. decrease the
ghosting artifacts by using the non-local module, which is
designed based on the pixel correspondence [7]. However,
their method cannot generate sharp edges (yellow arrow) in
Fig. 7 and cannot avoid the ghosting artifacts in Fig. 8.
Niu et al. incorporated the adversarial learning to produce
faithful information in the regions with missing content [8].
Their method also suffers from the problematic transformation
in the junction regions (green arrows) in Fig. 7 and the
unreasonable color reconstruction in Fig. 8. Our method is
more sensitive to ghosting artifacts and handles them properly.
We further show the comparisons with Niu et al.’s method

Fig. 10. The variation trend of the FLOPs and the inference times when
selecting test images with different resolutions. The smallest image size in the
figure is 256 × 384, which is labeled as ×1. The image size of ×1.5 in the
figure is 384 × 576. Therefore, the largest image size ×4 is 1024 × 1536.

on scene with large motions. Fig. 9 show the input images
(Fig. 9 (a)) and results of Niu et al.’s method (Fig. 9 (b))
and our method (Fig. 9 (c)). Overall, our method achieves
comparable result with Niu et al.’s method. Specifically, our
method preserves more details than Niu et al.’s method, such
as the crevice between two car doors (red box).

D. Computational Complexity

Computing efficiency is also an important factor for eval-
uating the fusion performance. The comparisons of inference
time and parameters are then conducted. The results for fusion
images with size 1000 × 1500 on the test set are reported in
Table V. There is a large difference between different methods.
Two patch match-based methods [3], [4] take approximately
60s and 80s, respectively. The deep learning-based methods
are faster than patch patch-based methods due to the training
environment. Kalantari et al.’s method [5] costs about 30s,
which is mainly spent on the optical flow pre-processing.
Wu et al.’s method [6] and Yan et al.’s method [7] take
less inference time but their networks include a large number
of parameters. Niu et al.’s method [8] and the proposed
UPHDR-GAN have similar performance on the computational
complexity. However, the proposed method needs fewer para-
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TABLE V

THE INFERENCE TIME AND PARAMETERS OF DIFFERENT METHODS ON THE TESTING SET WITH SIZE 1000 × 1500. THE ‘-’ DENOTES THAT
THE PATCH MATCH-BASED METHODS DO NOT HAVE PARAMETERS

Fig. 11. The results on real-life scenes captured by HUAWEI Mate 10 smartphones. Each case includes three inputs with different exposures and corresponding
results generated by UPHDR-GAN.

TABLE VI

ABLATION EXPERIMENTS OF DIFFERENT COMPONENTS. RED COLOR INDICATES THE BEST PERFORMANCE AND
BLUE COLOR INDICATES THE SECOND BEST RESULTS

meters and costs less inference time by taking the advantage
of the well-designed architecture.

To better illustrate the computing efficiency of the proposed
method, Fig. 10 shows the variation trend of the FLOPs and
the inference time when selecting test images with different
resolutions. The smallest image size in Fig. 10 is 256 × 384,
which is labeled as ×1. The largest image size ×4 is 1024 ×
1536. Obviously, the FLOPs and the inference time increase
with the increase of image resolution. When the resolution
changes from ×3.5 (896 × 1344) to ×4 (1024 × 1536),
the FLOPs increases dramatically. If we continue to enlarge
the image size, the curve of the FLOPs will have a larger
slope. In order to be consistent with other methods and obtain
the balance between network performance and computational
complexity, we set the size of test images as 1000 × 1500.

E. Results on Sequences Captured by Hand-Held
Smartphones

We also conduct experiments on multi-exposure images
captured by hand-held smartphones. We apply the HUAWEI
Mate 10 to capture the input sequences, whose exposure time
is adjusted manually. The captured scenes may have two prob-
lems: large-scale shaking and dynamic objects. To solve the
first problem, we adopt the homograph registration from [59]
to achieve the background alignment. Then, the proposed

architecture can handle the artifacts caused by dynamic
objects. The fusion results on real-life images are shown in
Fig. 11. The proposed method also performs well because
the training dataset contains diverse scenes, including many
real-life sequences captured by different devices.

F. Ablation Studies

We conduct the ablation studies of different items in the
architecture to understand the effectiveness of our designed
modules. Table VI displays the ablation results of different
components. First, the results from the second column to
the fourth column show the importance of selecting suitable
weights of the content loss. Second, the fifth column shows the
evaluation scores when applying the MSE loss as the content
loss. Third, the results when we remove the initialization
phase are listed in the sixth column in Table VI. Fourth,
the seventh column shows the results when removing the
min-patch training module. Fifth, the results without blur
dataset are exhibited in the eighth column. Last, the ninth
column displays the results when we merely train our network
on Kalantari et al.’s dataset. The results demonstrate that each
component contributes to the final results.

1) Ablation Study of wcon: We first conduct the experiments
of selecting different wcon to illustrate why we set the weight
to 1.5. The results when we select different wcon are shown in

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on November 04,2022 at 10:11:57 UTC from IEEE Xplore.  Restrictions apply. 



7542 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 11, NOVEMBER 2022

Fig. 12. The effect of different wcon . We set wcon to be 1.5 at the initial stage to keep a balance between HDR transformation and content preservation.

Fig. 13. The influence of min-patch training. (a) The generated results
without min-patch training. (b) The generated results with min-patch training.

Table VI and Fig. 12. From the second column to the fourth
column in Table VI, we can conclude that unsuitable weights
of the content loss apparently degrade the results, which
has a consistent performance with the qualitative results in
Fig. 12. Smaller wcon cannot generate desired details or suffer
from ghosting artifacts because they tend to learn the trans-
lation but ignore preserving the semantic content information
(Fig. 12 (a)-(c)). We set wcon to be 1.5 when the network in
the initialization to strike a balance between unpaired domain
transformation and paired semantic information preservation.
If we continue to increase the value of wcon , the results will be
similar to the middle-exposure LDR image because they bring
more content information from the input so that the dynamic
range of the result is limited.

Fig. 14. The influence of blur dataset. (a) Results without blur dataset.
(b) Results with blur dataset.

2) Ablation Study of Min-Patch Training Module: Conven-
tional discriminator can distinguish the real HDR images and
generate HDR images. However, not all regions contribute
to the discriminator optimization during training. If a small
part of the generated image is so strange as to be different
from the real image, it can be considered as ghosting artifact.
We add the min-patch training module to detect such regions
and avoid ghosting artifacts. The quantitative results when
removing the min-patch training module in Table VI (the
seventh column) are worse than the complete UPHDR-GAN.
Fig. 13 shows the effectiveness of the min-patch train-
ing module. After using the min-patch training module,
UPHDR-GAN generates results with fewer artifacts (Fig. 13
(b)) compared to results without the min-patch training
module (Fig. 13 (a)).
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Fig. 15. Fusion results when selecting different input images as the reference. (a) Input images. (b) Results when selecting the middle-exposure image as
the reference. (c) Results when selecting the under-exposure image as the reference. (d) Results when selecting the over-exposure image as the reference.

3) Ablation Study of Blur Dataset: Simply applying GAN
loss is not sufficient for generating sharp HDR images. Having
clear edges is an important characteristic of HDR images, but
common GAN loss may produce results with unclear edges.
To solve the problem, we add a blur dataset B as fake images
to confuse the discriminator to produce images with sharp
edges. The eighth column in Table VI presents the quantitative
results when we remove the blur dataset. Corresponding eval-
uation scores are lower than the final results. Fig. 14 shows the
qualitative results of without and with the blur dataset, among
which the results with blur dataset (Fig. 14 (b)) have more
sharp edges, such as the line shadow in the window region
of the top case and the boundaries of the ceramic tiles in the
bottom case.

4) Ablation Study of Different Reference: We also conduct
the experiments when selecting different input images as the
reference. Fig. 15 (a) are the input images with different
exposures. Fig. 15 (b) are the results when selecting the
middle-exposure image as the reference, while Fig. 15 (c) and
Fig. 15 (d) are the results when selecting the under-exposure
image and the over-exposure image as the reference, respec-
tively. The two scenes in Fig. 15 have background misalign-
ments between the input images. Furthermore, there is a
moving person in the right case. The proposed method can
handle the misalignments and solve the moving objects well
no matter which input image is chosen as the reference. For
example, in the right case, when we select the under-exposure
image as the reference, the semantic information of the fusion
result (Fig. 15 (c)) is the same to the under-exposure image.
The proposed method can properly handle the moving objects
when fusing information from other exposure images. How-
ever, the image quality between (b), (c) and (d) are different.
The under-exposure image has large black regions due to the
insufficient exposure time. If we select the under-exposure
image as the reference, the result may suffer from color-
drift (green boxes in Fig. 15 (c)). On the contrary, if we
choose the over-exposure image as the reference, the content

Fig. 16. Ablation experiment of different content loss. (a) Input images.
(b) Result when selecting the MSE loss as content loss. (c) Result when
selecting the perceptual loss as content loss.

of over-exposed regions cannot recover well because noise can
be easily introduced (Fig. 15 (d)). Obtaining information from
near exposure is easy. It is challenging to acquire information
from over-exposure image when the under-exposure image is
selected as the reference, and vice versa. It is reasonable that
the image quality of Fig. 15 (c) and (d) is slightly inferior to
Fig. 15 (b) because the target HDR domain is the collection
of HDR images that correspond to the distribution of 2-nd
input images. Suitable techniques to adjust the exposure are
necessary to generate high-quality results when selecting the
under- and over- exposure images as the reference.

5) Ablation Study of Different Content Loss: We show the
results when applying different forms of the content loss
in the fifth column of Table VI and Fig. 16. Our method
adopts the perceptual loss (Fig. 16 (c)) as the content loss
to achieve high-level feature abstraction, which keeps the
content information between the middle-exposure image and
the generated image although the middle-exposure image and
the result have different styles. Fig. 16 (b) shows the result
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when selecting the MSE loss as the content loss, which means
Lcon(G) = Ex∼pdata(x)

[
(G(x) − x2)

2
]
. The MSE loss is more

strict than the perceptual loss because it directly minimizes
the difference between two images. As for our task, the MSE
loss tends to constrain the generated image to be similar to
the reference, and cannot learn the domain transformation
satisfactorily. The result in Fig. 16 (b) has large black regions
and cannot acquire the details of under- and over-exposed
regions from other exposure images (red arrow). In Table VI,
the quantitative scores when selecting the MSE loss as content
loss are also lower than the perceptual loss.

G. Discussion

Multi-exposure image fusion is a challenging topic, espe-
cially considering the image quality of generated images
(related to the under- or over-exposed regions) and the ghost-
ing artifacts (caused by the moving objects). Although we have
collected a dataset that includes a variety of scenes and can
satisfy recent requirements, creating a larger comprehensive
dataset with more diverse scenes is helpful for the development
of image fusion. Besides, as for deep learning-based methods,
the number of input images is commonly fixed to three due
to the network architecture. We also consider increasing the
flexibility of input exposure numbers as our future work. This
may be implemented by using a fully convolutional network,
which is shared by different exposed images, enabling the
network to process arbitrary spatial resolution and arbitrary
number of exposures.

V. CONCLUSION

We have proposed a novel method to generate HDR images
from multi-exposure inputs with unpaired datasets. The pro-
posed method relaxes the constraints that deep learning-based
methods need paired inputs and ground truth by introducing
generative adversarial networks. The proposed method learns
the translation between the input domain and the target domain
and transforms the multi-inputs into an informative HDR out-
put. However, generative adversarial networks obtain unclear
results sometimes. We designed specific techniques to gener-
ate images with sharp edges and clear content information,
including the initialization phage, the improved adversarial
loss and the designed min-patch training module. Compre-
hensive experiments have been conducted to demonstrate the
effectiveness of the proposed UPHDR-GAN.
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