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Abstract— The paper proposes a solution based on Generative
Adversarial Network (GAN) for solving jigsaw puzzles. The
problem assumes that an image is divided into equal square
pieces, and asks to recover the image according to information
provided by the pieces. Conventional jigsaw puzzle solvers often
determine the relationships based on the boundaries of pieces,
which ignore the important semantic information. In this paper,
we propose JigsawGAN, a GAN-based auxiliary learning method
for solving jigsaw puzzles with unpaired images (with no prior
knowledge of the initial images). We design a multi-task pipeline
that includes, (1) a classification branch to classify jigsaw per-
mutations, and (2) a GAN branch to recover features to images
in correct orders. The classification branch is constrained by the
pseudo-labels generated according to the shuffled pieces. The
GAN branch concentrates on the image semantic information,
where the generator produces the natural images to fool the
discriminator, while the discriminator distinguishes whether a
given image belongs to the synthesized or the real target domain.
These two branches are connected by a flow-based warp module
that is applied to warp features to correct the order according to
the classification results. The proposed method can solve jigsaw
puzzles more efficiently by utilizing both semantic information
and boundary information simultaneously. Qualitative and quan-
titative comparisons against several representative jigsaw puzzle
solvers demonstrate the superiority of our method.

Index Terms— Solving jigsaw puzzles, generative adversarial
networks, auxiliary learning.

I. INTRODUCTION

SOLVING the jigsaw puzzle is a challenging problem that
involves research in computer science, mathematics and

engineering. It abstracts a range of computational problems
that a set of unordered fragments should be organized into their
original combination. Numerous applications are subsequently
raised, such as reassembling archaeological artifacts [1]–[4],
recovering shredded documents or photographs [5]–[7] and
genome biology [8]. Standard jigsaw puzzles are made by
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dividing images into interlocking patterns of pieces. With
the pieces separated from each other and mixed randomly,
the challenge is to reassemble these pieces into the original
image. The degree of difficulty is determined by the number
of pieces, the shape of the pieces and the graphical compo-
sition of the picture itself. The automatic solution of puzzles,
without having any information on the underlying image,
is NP-complete [9], [10]. This task relies on computer vision
algorithms, such as contour or feature detection [11]. Recent
development of deep learning (DL) opens bright perspectives
for finding better reorganizations more efficiently.

The first algorithm that attempted to automatically solve
general puzzles was introduced by Freeman and Gardner [14].
The original approach was designed to solve puzzles
with 9 pieces by only considering the geometric shape of
the pieces. Various puzzle reconstruction methods are then
introduced, which obey a basic operation that the unassigned
piece should link to an existing piece by finding its best
neighbor according to some affinity functions [1], [15], [16]
or matching contours [6], [17], [18]. These algorithms are
slow because they keep iterating themselves until a proper
solution is produced, as long as all parts are put in place.
Moreover, the ‘best neighbors’ may be false-positives due to
the occasionally unobvious continuation between true neigh-
bors. Some subsequent works are proposed to avoid checking
all possible permutations of piece placements [19]–[22]. How-
ever, they mainly concentrate on the boundary information
(four boundaries of each piece), whereas ignoring the semantic
information that is useful for image understanding. Recently,
some methods based on convolutional neural networks (CNN)
have been introduced for predicting the permutations by neural
optimization [23], [24] or the relative position of a fragment
with respect to another [12], [25], [26]. Similar to previous
methods, these algorithms do not consider the semantic content
information and only rely on learning the position of each
piece.

In this paper, we propose JigsawGAN, a GAN-based auxil-
iary learning pipeline that combines the boundary information
of pieces and the semantic information of the global images to
solve jigsaw puzzles, which can better simulate the procedure
that how humans solve jigsaw puzzles. Auxiliary learning
approaches aim to maximize the prediction of a primary task
by supervising the model to additionally learn a secondary
task [27], [28]. In this work, we address the problem of
permutation classification by simultaneously optimizing the
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Fig. 1. Comparisons with two recent jigsaw puzzle solvers. (a) Input images.
(b) Results of Paumard et al.’s method [12]. (c) Results of Huroyan et al.’s
method [13]. (d) Our results. Paumard et al.’s method [12] cannot handle
these two cases and Huroyan et al.’s method [13] fails to solve the house
example. The proposed JigsawGAN works well on these cases due to the
concentration of boundary and semantic information simultaneously.

GAN network as an auxiliary task. The proposed pipeline
consists of two branches, a classification branch (Fig. 2 (b))
and a GAN branch (Fig. 2 (d), (e) and a discriminator). The
classification branch classifies the jigsaw permutations, and
the GAN branch recovers features to images with correct
sequences. The two branches are connected by the encoder
(Fig. 2 (a)) and a flow-based warp module (Fig. 2 (c)).

The flow-based warp module is applied to warp encoder
features to the predicted positions according to the classifi-
cation results. Moreover, it contributes to the gradient back
propagation from the GAN branch to the classification branch.
The GAN branch consists of the decoder and the discriminator.
The former one recovers the features to the images and the
latter one aims to classify that an image belongs to the
generated dataset or the real dataset. The discriminator can
be regarded as the process that humans judge whether the
reorganization of pieces is correct. The judgment process is
essential to equip the pipeline with the capability of high-level
image understanding, together with low-level boundary clues.
The boundary loss and the GAN loss are applied for constrain-
ing the boundaries of pieces and distinguishing the semantic
information, respectively. The JigsawGAN is mainly designed
for solving 3 × 3 puzzles and existing algorithms for 3 × 3
puzzles can benefit from our method. We introduce reference
labels to guide the convergence of the classification network.
The GAN branch can push the encoder to generate more
informative features, thereby obtaining higher classification
accuracy. Our method is able to improve the reorganization
accuracy of existing methods if we select their results as our
reference labels. Detailed descriptions and experiments are
presented in Section IV-E.4.

Fig. 1 shows the comparisons with two recent methods [12],
[13]. Paumard et al. proposed a CNN-based method to detect
the neighbor pieces and applied the shortest path optimization
to recover the images [12]. Huroyan et al. applied the graph
connection Laplacian algorithm to determine the boundary
relationships [13]. Fig. 1 exhibits the reassembled pieces
according to the predicted labels. It includes two hard exam-
ples, in which three grassland pieces in the house example and
two leg pieces in the elephant example can be easily confused.

Paumard et al.’s method [12] cannot handle the two cases and
Huroyan et al.’s method [13] fails to solve the house example.
In contrast, our method works well on these cases due to the
concentration on the boundary information and semantic clues.

Overall, the main contributions are summarized as follows:
• We propose JigsawGAN, a GAN-based architecture to

solve jigsaw puzzles, in which both the boundary infor-
mation and semantic clues are fused for the inference.

• We introduce a flow-based warp module to reorganize
feature pieces, which also ensures the gradient from the
GAN branch can be back-propagated to the classification
branch during the training process.

• We provide quantitative and qualitative comparisons with
several typical jigsaw puzzle solvers to demonstrate the
superiority of the proposed method.

II. RELATED WORKS

Introduced by Freeman and Gardner [14], the puzzle solving
problems have been studied by many researchers, even though
Demaine et al. discovered that puzzle assembling is NP-hard
if the dissimilarity is unreliable [10].

A. Solving Square-Piece Puzzles

Most jigsaw solvers assume that the input includes
equal-sized squared pieces. The first work was proposed
by [29], where a greedy algorithm and a benchmark were
proposed. They presented a probabilistic solver to achieve
approximated puzzle reconstruction. Pomeranz et al. evaluated
some compatibility metrics and proposed a new compatibility
metric to predict the probability that two given parts are
neighbors [16]. Gallagher et al. divided the squared jigsaw
puzzle problems into three types [19]. ‘Type 1’ puzzle means
the orientation of each jigsaw piece is known, and only
the location of each piece is unknown. ‘Type 2’ puzzle is
defined as a non-overlapping square-piece jigsaw puzzle with
unknown dimension, unknown piece rotation, and unknown
piece position. Meanwhile, the global geometry and position
of every jigsaw piece in ‘Type 3’ puzzle are known, and
only the orientation of each piece is unknown. Gallagher et al.
solved ‘Type 1’ and ‘Type 2’ puzzle problems through the
minimum spanning tree (MST) algorithm constrained by
geometric consistency between pieces. A Markov Random
Field (MRF)-based algorithm was also proposed to solve the
‘Type 3’ puzzle.

Some subsequent works were proposed to solve the ‘Type 1’
puzzle problem. Yu et al. applied linear programming to
exploit all pairwise matches, and computed the position of
each component [30]. There are also some methods aimed to
solve the complicated ‘Type 2’ puzzle problem. Son et al.
introduced loop constraints for assembling non-overlapping
jigsaw puzzles where the rotation and the position of each
piece are unknown [20]. Huroyan et al. utilized graph connec-
tion Laplacian to recover the rotations of the pieces when both
shuffles and rotations are unknown [13]. Some variants were
investigated subsequently, including handling puzzles with
missing pieces [31] and eroded boundaries [12]. Paikin et al.
calculated dissimilarity between pieces and then proposed
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Fig. 2. The pipeline exhibits the architecture of the proposed JigsawGAN, which consists of two streams that operate different functions. The top stream
classifies the jigsaw permutations. In turn, the bottom stream recovers features to images. The two streams are connected by the encoder and a flow-based
warp module. The encoder extracts features of input shuffled pieces. The shuffled features are then combined, called Fshu f f le , to be fed to the classification
module to predict the jigsaw permutation. The classification results provides information to generate flow fields that can reassemble the combined feature
Fshu f f le to a new combined feature Fwarp . The warped feature Fwarp is then sent to the residual blocks and the decoder to recover natural image.

a greedy algorithm for handling puzzles of unknown size
and with missing entries [31]. Bridger et al. proposed a
GAN-based architecture to recover the eroded regions and
reassembled the images using greedy algorithms [26]. Our
method concentrates on solving the ‘Type 1’ non-overlapping
square-piece jigsaw puzzles.

Current DL-based methods are mainly designed for solv-
ing 9 pieces with strong robustness compared to traditional
algorithms. Dery et al. [24] applied a pre-trained VGG model
as feature extractor and corrected the order using a pointer
network [32]. Paumard et al. utilized a CNN-based method
to detect the neighbor pieces and used the shortest path
optimization to recover the eroded images [12]. These methods
obey the conventional rule to solve jigsaw puzzles, which
consists of two steps. The first step is applying the neural
network to determine the relationships of pieces, and the
second step is using optimization techniques to reorganize
the pieces. Their performances are limited by the first step
due to the aperture problem based only on the local pieces.
We propose a GAN-based approach to include global semantic
information apart from local pieces for a better accuracy.

B. Pre-Training Jigsaw Puzzle Solvers

Numerous self-supervised methods consider solving jigsaw
puzzles as pre-text tasks. This learning strategy is a recent
variation of the unsupervised learning theme that transfers
the pre-trained network parameters on jigsaw puzzle tasks
to other visual recognition tasks [33]. These methods assume
that a rich universal representation has been captured in the
pre-trained model, which is useful to be fined-tuned with
the task-specific data using various strategies. Noroozi et al.
introduced a context-free network (CFN) to separate the pieces
in the convolutional process. Its main architecture focused on
a subset of possible permutations including all the image tiles
and solved a classification problem [34]. Santa et al. proposed

to handle the whole set by approximating the permutation
matrix and solving a bi-level optimization problem to recover
the right ordering [35]. The above methods tackled the prob-
lem by dealing with the separate pieces and then finding a way
to recombine them. Carlucci et al. proposed JiGen to train a
jigsaw classifier and a object classifier simultaneously. They
focused on domain generalization tasks by considering that the
jigsaw puzzle solver can improve semantic understanding [36].
Du et al. combined the jigsaw puzzle and the progressive
training to optimize the fine-grained classification by learning
which granularities are the most discriminative and how to fuse
information cross multi-granularity [37]. However, solving
jigsaw puzzle tasks in these methods are supervised, which
depend heavily on the training data. In this paper, we propose a
GAN-based auxiliary learning method to solve jigsaw puzzles,
where the ground truth of jigsaw puzzle task is unavailable.
Auxiliary learning in our method means that we formulate
the permutation classification as the primary task with the
secondary goal is to optimize the GAN network.

III. METHOD

We propose a GAN-based architecture for solving the jigsaw
puzzles with unpaired datasets. The architecture includes two
streams operating different functions. The first stream defines
the jigsaw puzzle solving as a classification task to judge
which permutation the shuffled input belongs to. The second
stream is composed of the generator G and the discriminator
D. The generator G learns the mapping function between
different domains, while the discriminator D aims to optimize
the generator by distinguishing target domain images from the
generated ones. Specifically, we generate a wide diversity of
shuffled images {xi}i=1,...,N ∈ X as the source domain data,
and a collection of natural images {y j } j=1,...,M ∈ Y , as the
target domain data. The data distributions of the two domains
are denoted as x ∼ pdata(x) and y ∼ pdata(y), respectively.
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TABLE I

LAYER CONFIGURATIONS OF THE ARCHITECTURE. B REPRESENTS THE BATCH SIZE, Hp AND Wp ARE THE HEIGHT AND WIDTH OF INPUT PIECES. THE
ENCODER EXTRACTS FEATURES OF INPUT SHUFFLED PIECES. THE SHUFFLED FEATURES ARE THEN COMBINED (Fshu f f le ) WITH SIZE H f AND

W f . THE WARPED FEATURE Fwarp IS SENT TO THE RESIDUAL BLOCKS AND THE DECODER TO RECOVER NATURAL IMAGE

A. Network Architecture

We present the classification network C , generator G in
Fig. 2. where C , G and the discriminator D are simultaneously
optimized during the training process. Their detailed layer
configurations are shown in Table I. The inputs are obtained
by decomposing the source images into n × n pieces, which
are then shuffled and reassigned to one of the n2 grid positions
to generate n2! combinations. n2! is a very large number and
scarcely possible to be considered as classification tasks if
n > 2, for example, (32)! = 362, 880. Generally, P elements
are selected from n2! combinations according to the maximal
Hamming distance [34], and we assign an index to each entry.
In our implementation, solving the jigsaw puzzle is considered
as a classification task and each permutation corresponds to
a classification label. The number of permutations indicates
the classification categories. The ultimate target is to predict
correct permutation of the shuffled input image.

The shuffled input image is first divided into n × n
pieces, and the pieces are sent to the network in parallel.
We choose the discrete pieces as inputs in order to prevent the
cross-influence between the boundaries of pieces. The encoder
(Fig. 2 (a)) extracts features of these shuffled pieces. The
shuffled features are then combined, called Fshu f f le, to be sent
to the classification module (Fig. 2 (b)) to predict the jigsaw
permutation. The classification module is constrained by the
pseudo-labels, called reference labels. During the training,
we find that an unsupervised classification network converges
only with difficulty. To solve the problem, we generate the
reference labels to guide C . The classification results provide
information to generate flow fields (Fig. 2 (c)) that can
reassemble the combined feature Fshu f f le to a new combined
feature Fwarp . The warped feature Fwarp is then sent to the
residual blocks (Fig. 2 (d)) and the decoder (Fig. 2 (e)) to
recover natural images. The decoder can recover a perfect

reorganized image if Fwarp is reassembled with the correct
order according to the classification label.

When the real permutation labels and the correct natural
images are unavailable, we adopt the GAN architecture to
achieve the unsupervised optimization. The vanilla GAN con-
sists of two components, a generator G and a discriminator
D, where G is responsible for capturing the data distribution
while D tries to distinguish whether a sample comes from
the real data or the generator. This framework corresponds to
a min-max two-player game, and introduces a powerful way
to estimate the target distribution. The GAN branch provides
global constraints to enable the network to concentrate on
semantic clues. The decoder and the discriminator as well as
extra losses enable the encoder to generate more informative
features and further improve the classification network.

1) Classification Network: The classification network con-
sists of two parts: the convolutional blocks (the encoder) and
the classification module. The encoder extracts useful sig-
nals for downstream transformation. The classification module
aims to distinguish different permutations, which includes
convolutional layers, max pooling layers and fully connected
layers.

2) Generator: The generator network is composed of three
parts: the encoder, eight residual blocks and the decoder. The
encoder of the classification network also extracts features for
the generator. Afterward, eight residual blocks with identical
layouts are adopted to construct the content and the manifold
features. The decoder consists of two identical transposed
convolutional blocks and a final convolutional layer.

3) Discriminator: The discriminator network complements
the generator and aims to classify each image as real or
fake. The discriminator network includes several convolutional
blocks. Such a simple discriminator uses fewer parameters and
can work on images of arbitrary sizes.
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Fig. 3. The flow-based warp module can warp the shuffled features to ordered
features according to the classification results.

B. Flow-Based Warp Module

The GAN branch cannot recover the extracted features
directly because the features are shuffled. We introduce a
flow-based warp module to reassemble the shuffled encoder
features and ensure the gradient can be back-propagated cor-
rectly during the feature recombination. In detail, we define
the flow fields to represent dense pixel correspondences
between the shuffled encoder features (Fshu f f le) and the
warpped features (Fwarp). The optical flows are constructed
according to the predicted labels, which are used to warp
Fshu f f le into Fwarp . The size of the flow-based warp module
is defined as H f × W f × 2, where the first H f × W f

channel controls the horizontal shift of the features and the
last H f × W f channel calculates the vertical shift of the
features. The discrete encoder features are combined before
reassembling by the flow-based warp module. H f and W f are
the height and width of combined features. The flow-based
warp module not only rearranges the shuffled features but
also guarantees the gradient back propagation. Note that, some
shift operations can also recombine the shuffled features, but
block the gradient back propagation. As a result, the semantic
information from the GAN branch cannot be delivered to the
classification branch, thereby resulting in lower classification
accuracy.

The decoder can recover perfect images if the classification
labels are accurate, as shown in Fig. 3. Some wrong classifi-
cation can be tolerated when the network is initialized because
the GAN optimization can correct the mistakes gradually.
GAN network can detect the reorganization error and rectify
it according to the semantic information acquired from the
real dataset. The correct information will be transferred to
the encoder and the classification module through the gradient
back propagation, and can guide the classification network to
classify the input correctly on following iterations.

C. Loss Function
We design our objective function to include the following

three losses: (1) the jigsaw loss L j igsaw(C), which optimizes
the classification network to recognize the correct permu-
tations; (2) the adversarial loss LGAN(G, D), which drives
the generator network to achieve the desired transformation;
(3) the boundary loss Lboundary(G, D), which pushes the
decoder of G to recover clear images, and further constrains
the encoder to generate useful features that are helpful for the

classification network. The full objective function is:
L(G, D, C)= L j igsaw(C)+LGAN(G, D)+Lboundary(G, D)

(1)

1) Jigsaw Loss: We consider the jigsaw puzzle solving
as a classification task and P is the classification category.
Kullback-Leibler (KL) divergence can measure the similarity
between the predicted distribution and the target distribution.
The KL divergence becomes smaller when two permutations
tend to be similar. We aim to minimize the KL divergence
between the reassembled result ( ppredict ) and the ground truth
(preal), which can be described as follows:

arg min K L(ppredict , preal) (2)

A simple classification network is first proposed to recog-
nize the correct permutation. We minimize the following
jigsaw loss to optimize the classification network:

L j igsaw(C) = Ex∼pdata(x)[C E(C(x), p)], (3)

where p is the probability distribution of the real data, C(x)
is the probability distribution of the predicted data which indi-
cates the probability that the result belongs to each category.
p and C(x) are defined as matrix with size B × P , where B
is the batch size. CE is cross-entropy loss which is defined as:

C E(C(x), p) = −
∑

p · log(C(x)) (4)

However, the real jigsaw labels are unavailable for
unsupervised tasks. Directly training C without jigsaw
labels is impossible. The classification network tends to
assign labels randomly, which achieves 30-40% classifica-
tion accuracy for three-classification tasks and 20-30% for
four-classification tasks according to our experiments. Note
that, three-classification tasks mean the dataset contains three
categories and the model will predict the most likely category
that one input belongs to. Pseudo-labels are introduced to
achieve better classification performance. The pseudo-labels,
called reference labels, are generated according to the shuffled
input images. The reference labels can constrain C when
permutation indexes are unavailable. We apply the following
five steps to obtain the reference labels:

1) Cutting four boundaries from each piece, and the width
of the boundary is determined by a hyper-parameter pi x .

2) Calculating the PSNR values between the top boundary
of a specific piece and bottom boundaries of other pieces
to obtain a vector with size 1 × n2. Then, a n2 × n2

matrix can be obtained when computes all top-bottom
relationships, as shown in Fig. 4.

3) Applying the same way to get another n2 × n2 matrix
to indicate the left-right relationships.

4) There are n × (n −1) correct top-bottom boundary pairs
and n × (n − 1) correct left-right boundary pairs, so we
adopt a greedy algorithm [38] to select n × (n − 1)
maximum values from two matrices, respectively.

5) A minimum spanning tree (MST) algorithm [19] is
then applied to assemble the pieces, and the reference
permutation pref is returned.
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Fig. 4. In this case, we calculate the PSNR values between the top
boundary of the top-middle piece and the bottom boundaries of other pieces.
Corresponding PSNR values are displayed in (a). These PSNR values compose
the second row of the 9 × 9 top-bottom relationship metric, as shown in (b).

TABLE II

EXPERIMENTS TO SHOW THE INFLUENCE OF THE HYPER-PARAMETER pix

Empirically, pi x is set to 1, which means we cut a row of
pixels of each boundary. Table II shows the corresponding
PSNR values and reorganization accuracy when we select
different pi x . A larger pi x may cut a wider boundary strip.
However, the redundant information could decrease the PSNR
values and the reorganization accuracy. We select pi x = 1
when we obtain the boundary strips, which are more sensitive
to the boundary discontinuity.

After the reference labels are obtained, focal (FL) loss [39]
is applied as the jigsaw loss. FL loss ensures the mini-
mization of the KL divergence whilst increasing the entropy
of the predicted distribution, which can prevent the model
from becoming overconfident. FL loss can down-weight easy
examples and focus training on hard negatives. We replace the
CE loss conventionally used with the FL loss to improve the
network calibration. FL loss is defined as:

F L(C(x), p) = −
∑

(1 − C(x) · p)γ · log(C(x)) (5)

where (1 − C(x) · p)γ is a modulating factor to optimize the
imbalance of the dataset and γ is a tunable focusing parameter
that smoothly adjusts the rate at which easy examples are
down-weighted. γ is set to 2 in our implementations. Finally,
the jigsaw loss can be described as follows:

L j igsaw(C) = Ex∼pdata(x)[F L(C(x), pref )] (6)

2) Adversarial Loss: The performance of the classifica-
tion module C is limited by the reference labels. After the
encoder module generating distinctive features, we add a
decoder module to recover the features to natural images.
We do not train an autoencoder network that directly recovers
the shuffled inputs because it is useless for the encoder to
generate more informative features. The proposed flow-based
warp module is able to warp the shuffled features (Fshu f f le)
to warpped features (Fwarp) according to the classification
results. The reorganized features Fwarp are then sent to the
GAN branch to recover the images. The GAN branch is

Fig. 5. (a) An incorrect reorganized result that may confuse the discriminator.
(b) The correct reassemble result. The numbers indicate the SSIM values
between two adjacent boundaries.

auxiliary to the classification branch and trained to help the
encoder module generate useful features that are aware of the
semantic information, and further improve the classification
performance.

As in classic GAN networks, the adversarial loss is used
to constrain the results of G to look like target domain
images. In our task, adversarial loss pushes G to generate
natural images in the absence of corresponding ground truth.
Meanwhile, D aims to distinguish whether a given image
belongs to the synthesized or the real target set, which tries
to classify an image into two categories: the generated image
G(x) and the real image y, as formulated in Eq. 7.

LGAN = Ey∼pdata(y)

[
log D(y)

]

+ Ex∼pdata(x)

[
log(1 − D(G(x))

]
(7)

3) Boundary Loss: The adversarial loss ensures that the
generated image looks similar to the target domain. It is
inadequate for a smooth transaction, especially at the bound-
aries of pieces. For example, in Fig. 5 (a), sorting adjacent
top-bottom pieces in house images mistakenly may confuse the
discriminator, such that the discriminator considers the imper-
fect image as correct image and cannot work as we desired.
Therefore, it is essential to enforce a more strict constraint to
guarantee the semantic consistency of the generated images.
To achieve this, we add penalties at the boundaries of pieces
to punish the incorrect combination. We first cut the decoder
result into n × n pieces and calculate the SSIM of adjacent
boundaries. For example, as for 3×3 puzzle, the top-left piece
needs to calculate the SSIM of its right boundary with the left
boundary of the top-middle piece (orange boxes in Fig. 5).
Similarly, the SSIM value between its bottom boundary and
the top boundary of the middle-left piece is computed (green
boxes in Fig. 5). We obtain n × (n − 1) values to represent
the top-bottom relationships and n × (n −1) values to indicate
the left-right relationships. Two average scores of these two
relationships are calculated to design the boundary loss, noted
as SSI Mtb and SSI Mlr , respectively. As such, the boundary
loss is defined as:
Lboundary(G, D) = Ex∼pdata(x)[(1 − SSI Mtb(G(x)))]

+ Ex∼pdata(x)[(1 − SSI Mlr (G(x)))] (8)

Matching boundaries generate large SSIM values. The
boundary loss provides more penalties to wrong placements.
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Fig. 6. Examples generated by the proposed JigsawGAN. The top two rows show the results when the hyper-parameter n = 2, the middle two rows present
the results when the hyper-parameter n = 3, and the bottom two rows are results when n = 4. Different styles can be efficiently reassembled by JigsawGAN.

IV. EXPERIMENTS

We first illustrate the datasets and implementation details
in Section IV-A and then conduct comprehensive experiments
to verify the effectiveness of the proposed method, including
quantitative comparisons (Section IV-B), qualitative compar-
isons (Section IV-C), computational times (Section IV-D) and
ablation studies (Section IV-E). Specifically, we first com-
pare our method with several representative jigsaw puzzle
works, including a classic jigsaw puzzle solver [19], a linear
programming-based method [30], a loop constraints-based
method [20], a graph connection Laplacian-based method [13],
and then compare with a recent DL-based method which
relies on the shortest path optimization [12]. Some comparison
methods are designed for handling the ‘Type 1’ and ‘Type 2’
puzzles simultaneously, which can be easily applied for our
‘Type 1’ task for solving 3×3 pieces. Next, ablation studies are
performed to illustrate the importance of different components.

A. Datasets and Implementation Details
1) Data Collection: The dataset includes 7,639 images,

among which 5,156 images originate from the PACS

dataset [40] and 2,483 images are from our own collec-
tion. The PACS dataset includes many pictures with similar
contents, so we gathered images from movies or Internet
that are more distinguishable to increase the diversity. Our
dataset covers 4 object categories (House, Person, Elephant
and Guitar), and each of them can be divided into 4 domains
(Photo, Art paintings, Cartoon and Sketches). Each category
is divided into three subsets: a jigsaw set (40%) to generate
the inputs, a real dataset (40%) to help the discriminator to
distinguish the generated images and real images, and a test set
(20%) to evaluate the performance of different methods. They
are randomly selected from the overall dataset. The shuffled
fragments are then prepared according to [36]: the input image
is divided into n × n pieces and the size of each piece is
set to 24 × 24. The permutation P is set to 1,000 in our
implementation. The hyper-parameter n and the permutation P
are important factors for the network performance. We perform
ablation studies on these two factors in Section IV-E.3.

2) Training Details: We implement JigsawGAN in PyTorch,
and all the experiments are performed on an NVIDIA RTX
2080Ti GPU with 100 epochs. For each iteration, every input
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TABLE III

QUANTITATIVE COMPARISONS WITH SEVERAL REPRESENTATIVE JIGSAW PUZZLE SOLVERS IN TERMS OF REORGANIZATION ACCURACY

image is divided into n × n pieces, which are sent to the
network in parallel. We choose the discrete pieces as inputs
in order to prevent the cross-influence between the bound-
aries of pieces. Current architecture can handle a maximum
of 16 pieces. If we want to deal with images with more pieces,
the classification network should be deepened with more
convolutional blocks to get a larger respective field. Adam
optimizer is applied with the learning rate of 2.0×10−4 for
the generator, the discriminator and the classification network.
The entire training process costs 4 hours on average.

B. Quantitative Comparisons

Table III lists the reorganization accuracy of the afore-
mentioned methods and the JigsawGAN when n = 3.
The reorganization accuracy means the proportion of cor-
rect reassembled images in all test images, and the scores
reported in Table III are the average results over the test
sets. Some comparison methods [13], [19], [20], [30] obey
the basic rules to solve jigsaw puzzles: (1) detecting bound-
aries to determine the relationship between the pieces, and
(2) applying different optimization methods to reassem-
ble the images. Gallagher et al. applied the Mahalanobis
Gradient Compatibility (MGC) measurement to determine the
pieces’ relationship and a greedy algorithm to reorganize
the pieces [19]. A considerable improvement for [19] was
proposed by [20], by adding loop constraints to the piece
reorganization process. Yu et al. combined the advantages
of greedy methods and loop propagation algorithms to intro-
duce a linear programming-based solver [30]. Huroyan et al.
applied the graph connection Laplacian to better understand
the reconstruction mechanism [13]. However, these methods
are limited by the boundary detection step, which will lead to
the randomness of their results. Paumard et al. [12] applied
the shortest path optimization algorithm to reorganize the
pieces, whose boundary relationship is predicted by a neural
network. Their pruning strategy for the shortest path algorithm
may affect the performance. Compared to these methods, our
JigsawGAN achieves the best scores, which improves the
performance against [12], [19], [20] with a relatively large
margin and has more than 4 point improvements compared
with [13], [30].

C. Qualitative Comparisons

In this section, we first show some reorganization results
generated by JigsawGAN in Fig. 6. Our method can reassem-
ble the inputs and generate high-quality results. Then, qualita-
tive comparisons with aforementioned methods are presented

in Fig. 7, which shows the reassembled pieces according to
corresponding predicted labels. The top two rows show the
results when the hyper-parameter n = 2, the middle two rows
present the results when n = 3, and the bottom two rows
are results when n = 4. In the first elephant example, the
top two pieces can be easily confused if the methods do not
consider the semantic content information. Results of [19],
[30] and [12] fail to solve the case. The guitar example has
weak boundary constraints between the pieces, which leads
to the failure of [20] and [12]. The strategy of Son et al.
aims to recover the complete shape from pieces based on a
dissimilarity metric [20]. The two musical note pieces have a
small contribution to construct the guitar structure and confuse
Son et al.’s method. Paumard et al. reassemble pieces with
boundary erosion, which directly determine the relationships
of pieces through a neural network and ignore the useful
boundary information [12]. In the first house example, results
of [19], [20] and [30] fail to solve the tree and roof pieces,
while the result of [12] cannot distinguish two road pieces.
In the second elephant example, they all fail to discriminate
the leg pieces. We noted that puzzles with low percentages
of recovery by these algorithms have large portions of pieces
with the same uniform texture and color. The global semantic
information and the strict boundary detection are indispensable
to obtain better reassemble results. The failure of the last two
house examples of other methods when n = 4 is caused by
the similar texture and the unobvious boundary. Note that,
the results of [12] are the same as the inputs when n = 4
because their method can only handle puzzles when n ≤ 3.
In comparison, by considering the global information (GAN
loss) and the boundary information (boundary loss) simulta-
neously, our method recovers these cases well.

D. Computational Times

Computing efficiency is also important for evaluating the
reassemble performance. We conduct comparisons of compu-
tational times with the aforementioned methods. The results
for solving 3 × 3 puzzles on the test set are reported in
Table IV. Gallagher et al.’s method [19] is the fastest algorithm
and our method is a bit slower than [19]. However, introducing
a useful network with a little more running time is advisable in
exchange for better results. Methods [30] and [13] are slower
than JigsawGAN due to the linear programming algorithm and
the optimized iteration, respectively. As for [20], most of
the time is spent in the pairwise matching, the unoptimized
merging, the trimming and the filling steps. Paumard et al.’s
method [12] is the slowest due to the complicated network
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Fig. 7. Qualitative comparisons with Gallagher et al.’s method [19], Son et al.’s method [20], Yu et al.’s method [30], Huroyan et al.’s method [13] and
Paumard et al.’s method [12]. The top two rows show the results when the hyper-parameter n = 2, the middle two rows present the results when n = 3, and
the bottom two rows are results when n = 4. The proposed method assembles both the boundary and the semantic information in order to generate more
accurate results. The results of [12] are the same as the inputs when n = 4 because their method can only handle puzzles when n ≤ 3.

TABLE IV

COMPUTATIONAL TIMES OF JIGSAWGAN AND THE COMPARISON METHODS WHEN SOLVING 3 × 3 PUZZLES

architecture and the reassemble graph. Although our method
takes approximately 4 hours on the training process, the
PSNR-based reference label and the GAN network are not
used in the test process, which take less running time on the
test set. The simple yet effective classification network can
provide satisfactory reassemble results.

E. Ablation Studies
1) Ablation Study of Loss Terms: We perform the ablation

study on the variants of the loss function to understand how

these main modules contribute to the final results. Table V
displays the ablation results, which demonstrates that each
component contributes to the objective function. We have
illustrated the importance of the jigsaw loss L j igsaw in
Section III-C.1. Directly training the classification network
without the jigsaw loss is impossible. The network tends
to assign results randomly, achieving 30-40% classification
accuracy for three-class tasks and 20-30% for four-class
tasks. Table V further shows the importance of the adversar-
ial loss LGAN and the boundary loss Lboundary. As shown
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TABLE V

ABLATION EXPERIMENTS OF DIFFERENT LOSS TERMS

TABLE VI

ABLATION EXPERIMENTS OF DIFFERENT DATASETS. P, H, G AND E
MEANS THE PERSON, HOUSE, GUITAR AND ELEPHANT DATASETS,

RESPECTIVELY. ‘H.G.E AND P’ REPRESENTS THAT WE TRAIN OUR

NETWORK ON HOUSE, GUITAR AND ELEPHANT DATASETS, AND

THEN TEST ON THE PERSON DATASET

in Table V, removing LGAN degrades the results substantially,
so as removing the Lboundary. The third column shows the
reorganization accuracy without LGAN, which indicates the
discriminator and corresponding loss are removed. The accu-
racy of without LGAN is apparently inferior to the final result.
The fourth column displays the result without Lboundary,
which means the decoder is only constrained by the adversarial
loss. The result is also not as good as our final result.
We also conduct the experiment that removes both LGAN and
Lboundary, which represents the GAN branch is not involved,
where the final classification accuracy only depends on the
reference labels pref . The result in the second column is worse
than the final result. We conclude that all three loss terms are
critical.

2) Ablation Study of Different Training Sets: This ablation
study aims to demonstrate the effectiveness of the semantic
information provided by the GAN branch. In Table VI, ‘P’
is the ‘Person’ dataset, ‘H’ means the ‘House’ dataset, ‘G’
represents the ‘Guitar’ dataset and ‘E’ indicates the ‘Elephant’
dataset. For each item in Table VI, the capital letter before
‘and’ means we train our network on corresponding datasets,
and the capital letter after ‘and’ means we test the model on
corresponding datasets. For example, ‘H.G.E and P’ represents
that we train the network on House, Guitar and Elephant
datasets, and then test on the Person dataset. Table VI exhibits
four groups of experiments according to different datasets.

We first select ‘P’ as the test dataset and set ‘P’, ‘H.P.G.E’
and ‘H.G.E’ as the training dataset, respectively. When the
training and the test dataset belong to the same category,
the network can learn the semantic information and obtain
the best performance (79.9%). Then, if we set all datasets
as the training set, the performance is inferior to the result
when the network is trained on a single dataset because
the mixed semantic information will influence the judgment
of the discriminator (72.4%). To explore the effectiveness
of the semantic information deeply, we further conduct the

TABLE VII

THE REORGANIZATION ACCURACY WHEN SELECT DIFFERENT n AND P

experiment when selecting ‘H.G.E’ as the training dataset
while the test set is ‘P’. The result shows that the network can
hardly obtain the correct semantic information if the training
set and the test set were less correlated. Therefore, the result
(66.9%) is similar to the result when we removing the GAN
branch (66.4%). For example, as for the ‘Person’ category,
if the generated image exchanges the arm and leg pieces,
the GAN network can judge that it is irrational according
to the semantic information acquired from the real ‘Person’
dataset, and give more penalties to the case. Otherwise, if the
real dataset contains images coming from other datasets,
the composition of ‘Person’ cannot be detected accurately. The
trend of other three datasets is the same as the Person dataset
(row 3 to row 8), which demonstrate the semantic information
provided by the GAN branch is important.

3) Ablation Study of Grids and Permutations: The selec-
tion of different n and P have significant influences on the
reorganization accuracy. As shown in Table VII, increasing
the permutation P obviously degrades the accuracy, so as
increasing the hyper-parameter n. Increasing P makes the
classification more complicated, while increasing n improves
the difficulty of detecting the relationships of pieces. With
the increase of P , the permutations become close to each
other and their features tend to be similar. It is challenging
for the classification network to recognize them correctly, and
therefore affecting the classification accuracy.

4) Ablation Study of Reference Labels: The proposed
method can be considered as an improvement technique
of existing methods, which can improve the reorganization
accuracy of them if we select their results as our reference
labels. As described in Section II, the jigsaw puzzle tasks can
be specifically divided into three categories: (1) conventional
methods that solve hundreds of pieces; (2) DL-based methods
which generally handle 3×3 pieces; (3) self-supervised learn-
ing methods that consider solving jigsaw puzzles as pre-text
tasks. The first category methods concentrate on obtaining
better performance in detecting the neighbor pieces, whereas
ignoring the accuracy of reassembling the images correctly.
If we consider assigning each piece to the correct place as a
perfect reconstruction, the proportion of correct reconstruction
images in all test images of their methods only occupies
50%-60% approximately. The proposed method belongs to
the second category and considers solving jigsaw puzzles
as a classification task. We define homogeneous algorithms
to indicate the methods that can be applied to solve 3 × 3
puzzles, including the second category method [12] and some
first category methods [13], [19], [20], [30]. The proposed
JigsawGAN is compatible with homogeneous methods to
create considerable improvement, which is benefited from the
GAN branch and corresponding losses.
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TABLE VIII

THE IMPROVEMENT WHEN SELECT DIFFERENT METHODS AS OUR REFERENCE LABELS

Table VIII shows the improvements of aforementioned
methods if we choose their results as our reference labels,
respectively. As for our results, higher reference label accuracy
leads to higher reorganization accuracy because the reference
labels can better guide the network to learn useful information,
such as achieving 81.0% accuracy for method [13]. The
improvements of [19] and [20] are significant, while the
improvements of [30] and [13] are relatively smaller because
there is an upper bound of the network. As for reference
labels with lower accuracy, the GAN branch can promote them
significantly. Moreover, it is reasonable that the improvement
for [12] is small because [12] is mainly designed for their
proposed dataset with eroded boundaries. Overall, no matter
how the reference labels are obtained, it can be promoted by
utilizing our proposed architecture.

F. Discussion

Solving the jigsaw puzzle with deep learning methods is a
developing research area, especially when the inputs include
many pieces. Conventional DL-based methods concentrate on
solving puzzles with 3 × 3 pieces. The upper limit of the
proposed architecture is determined by the respective field.
Current architecture can handle a maximum of 16 pieces. If we
want to deal with images with more pieces, the classification
network should be deepened with more convolutional blocks
to get a larger respective field. Moreover, solving non-square
puzzles is still a challenging research problem. The proposed
method in the current version is constrained by the reference
label and the boundary loss, which are designed to optimize
straight boundaries. Applying a metric designed for matching
non-square pieces to compute the boundary loss and update
the reference label may be useful for solving arbitrary-size
puzzles. We consider them as future works.

V. CONCLUSION

We have proposed JigsawGAN, a GAN-based auxiliary
learning method for solving jigsaw puzzles when the prior
knowledge of the initial images is unavailable. The proposed
method can apply the boundary information of pieces and
the semantic information of generated images to solve jigsaw
puzzles more accurately. The architecture contains the classi-
fication branch and the GAN branch, which are connected by
an encoder and a flow-based warp module. The GAN branch
drives the encoder to generate more information features and
further improves the classification branch. GAN loss and
a novel boundary loss are introduced to constrain the net-
work to focus on the semantic information and the boundary
information, respectively. We have conducted comprehensive
experiments to demonstrate the effectiveness of JigsawGAN.
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