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Abstract— In this paper, we introduce a novel point-to-surface
representation for 3D point cloud learning. Unlike the previous
methods that mainly adopt voxel, mesh, or point coordinates,
we propose to tackle this problem from a new perspective: learn
a set of quadratic terms based static and global reference surfaces
to describe 3D shapes, such that the coordinates of a 3D point
(x, y, z) can be extended to quadratic terms (xy, xz, yz, . . .) and
transformed to the relationship between the local point and the
global reference surfaces. Then, the static surfaces are changed
into dynamic surfaces by adaptive contribution weighting to
improve the descriptive capability. Towards this end, we propose
our point-to-surface representation, a new representation for 3D
point cloud learning that has not been attempted before, which
can assemble local and global geometric information effectively
by building connections between the point cloud and the learned
reference surfaces. Given 3D points, we show how the reference
surfaces are constructed, and how they are inserted into the 3D
learning pipeline for different tasks. The experimental results
confirm the effectiveness of our new representation, which has
outperformed the state-of-the-art methods on the tasks of 3D
classification and segmentation.

Index Terms— 3D representation, point cloud segmentation,
point cloud classification, 3D deep learning.

I. INTRODUCTION

THREE-DIMENSIONAL deep learning has attracted
extensive attentions in recent years, including but not

limited to, 3D classification [1], [2], 3D segmentation [3],
[4], shape completion [5], object detection [6], and 3D scene
understanding [7]. The learning of 3D point cloud is still
facing many challenges, due to the difficulties regarding the
inference of the underlying shapes from irregular point clouds.
Many works have been proposed to tackle this problem, from
volumetric representation that converts 3D shape into 3D grids
for 3D CNN [8], [9], to multi-view image representation [10],
[11] and then to directly point cloud processing that feeds the
points to the network inputs [1], [3], [12].
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Qi et al. [1] proposed a point-wise feature learning net-
work, PointNet, which consumes the points directly for 3D
learning. However, though impressive, this design ignores
the local structures that is important for 3D tasks [13].
Later, the PointNet++ [12] is proposed to use hierarchical
networks to learn local features with increased contextual
scales. In order to further extract topological information of
local point clouds, Wang et al. [14] presented a Dynamic
Graph Convolutional Neural Network (DGCNN) with Edge-
conv. Then, based on hierarchical CNN like PointNet++ [12],
Liu et al. [3] encoded the geometric priors of neighbors
for high-level relation learning. However, these methods are
limited to the relationship between point coordinates when
extracting the local geometric features.

In general, there are three main challenges regarding the
point cloud learning. First, how to capture good local and
global features due to the disorder of point cloud. Second, how
to represent effective geometric information of the underlying
shape by giving the point coordinates. Third, how to calculate
point cloud features in a simple and effective way. These chal-
lenges are open problems that are under exploration mainly
by modifying the network architectures and designs [3], [12],
[14]. In this work, we tackle the issue from a new perspective,
where we modify the representation at the beginning.

To this end, we propose our quadratic terms based point-
to-surface 3D representation considering both the point and
the geometric surface simultaneously. Fig. 1 shows some
simple examples. The surfaces to the left of the dashed
line are defined as the reference surfaces. Each surface can
be expressed as f (x, y, z) = 0. The function f (x, y, z) is
defined as a surface function, which is composed of the first
and second order terms (x, y, z, xy, xz, yz, x2, y2, z2) and a
constant. Fig. 1 gives three point clouds with simple shape,
a sphere and two ellipsoids. In order to describe the point
cloud locally and globally, we use the point cloud of the
entire dataset to learn the global reference surface. Then, all
points in the point cloud are taken as inputs of the global
surface function f (x, y, z). Through this operation, if a point
p = (x, y, z) is on the surface, then f (p) = 0. If all the
function values of local points are equal to zero, then the
surface f (x, y, z) = 0 is part of the input model around these
local points. Otherwise, the value of f (x, y, z) is not equal
to zero but depends on the distance. As shown in Fig. 1,
when the point cloud coincides with the surface, it appears
red. If the point is moving away from the surface, it appears
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Fig. 1. The shape of a point cloud can be described by comparing with
reference surfaces. In order to represent the local and global geometrical
information for a point p, the coordinates are extended to high-order and
weighted by every different surface function coefficients to obtain function
values. These values include local and global features. Then, they are used
for point representation.

in a gradient of other colors. Therefore, the function values of
local points reflect the local features. Moreover, the surface
f (x, y, z) = 0 is learned through the entire point clouds,
it is a global shape, so the surface function value f (p) of
point p = (x, y, z) can also indicate the relative position
relationship between the local point and the global surface.
Therefore, both local and global information is implicit in this
representation.

In this paper, the reference surfaces are determined by
learning the coefficients for the terms of f (x, y, z), as shown
in Fig. 1 (w1 ∼ w9, c). These coefficients do not require
special supervised learning. They can be easily learned within
only one convolution layer in the specific 3D tasks training.
In this process, we can learn N f reference surfaces at one
time. Then, every point in the point cloud can be fed into the
N f surface functions, resulting N f point-wise representation
as the input of the subsequent networks for specific 3D
analysis. After training, these coefficients are stored in the
checkpoint. For the testing data, however, these surfaces are
static, which limits the richness and description capability of
the reference surfaces. We prefer dynamic surfaces to describe
different shapes accordingly. Therefore, we utilize the initial
representation to learn the contribution weights of each surface
to each point and weight the initial representation to implement
the dynamic representation.

In summary, our main contributions are as follows:
• We propose a quadratic terms based point-to-surface

representation for point cloud learning, which addresses
the point cloud representation from a new perspective.

• We propose a dynamic representation based on the adap-
tive contribution weighting to improve the descriptive
capability of the point-to-surface representation.

• The new representation can effectively grasp local and
global features, facilitating the point cloud analysis.

• The proposed point-to-surface module is plug-and-play,
which can be inserted into various 3D pipelines seam-
lessly, creating new state-of-the-art performances, vali-
dated on 3D classification and segmentation tasks.

II. RELATED WORKS

A. Depth Image Representation

Compared to point cloud, depth image is orderly and
regular. Depth image can be easily obtained by stereo disparity
estimation [15], monocular depth estimation [16] and some
depth camera such as Kinect [17]. Therefore, depth-based 3D
tasks are widely concerned. For example, Soltam et al. [18]
proposed to synthesize 3D shapes via multi-view depth maps
with generative network. Ren et al. [7] proposed monocular
depth estimation for 3D indoor and outdoor scene understand-
ing. Some works [19], [20] studied the pose estimation using
depth image directly. In contrast, Chen et al. [21] proposed a
method that converts the depth image into point cloud with the
intrinsic parameters of the camera. Then, they reconstructed
the encoder of the SO-Net [22] to estimate the hand pose using
point cloud. Yavartanoo et al. [23] projected the 3D model
to multiple 2.5D depth maps for learning representations
of 3D objects with a Stereographic Projection Neural Network
(SPNet). However, depth-based methods are limited by the
accuracy of depth estimation.

B. Mesh Representation

Mesh is very difficult to extract shape features due to the
complexity and irregularity. Han et al. [24] proposed mesh
convolutional restricted Boltzmann machines to simultane-
ously learn local and global features from the mesh data.
For 3D mesh segmentation, Le et al. [25] rendered the mesh
model into multiple views to learn edges with CNN. Then,
these edges were unprojected back to 3D mesh for mesh
segmentation. Although this method avoids the complexity
and irregularity of mesh data through multi-view images,
the original mesh information is still not used for feature
extraction. Recently, Feng et al. [26] proposed a mesh neural
network (MeshNet) for 3D shape representation using original
mesh data. They regarded the triangular face as the unit.
So the disorder problem is solved by per-face processing.
Then, the geometrical information of triangular face are cal-
culated for 3D task learning. The experiments demonstrate the
effectiveness of MeshNet. Taha et al. [27] defined an inverse
mapping between the 3D mesh and the 2D texture image.
They mapped the 3D mesh features to 2D images for 3D
shape representation. The method has been applied to facial
expression and action recognition.

C. Multi-View Representation

Some researches proposed to render the 3D shape to
multi-view images for 3D classification [28] and shape
retrieval [29], [30]. Gadelha et al. [31] proposed to utilize
multi-view images to restore 3D shape with projective gen-
erative adversarial networks. Considering the similarities and
differences between multi-view images, Feng et al. [11] pro-
posed a group-view CNN network for 3D shape recognition.
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Different from the view-wise feature extraction, Yu et al. [10]
aggregated the multi-view local features by bilinear pooling.
Then, they harmonized these bilinear feature components for
3D representation. Huang et al. [2] proposed to render 3D
object as multi-view images to learn a disentangled represen-
tation for 3D classification. These methods convert disordered
3D data into ordered 2D images. Then, the mature 2D scene
understanding techniques are applied to 3D understanding.

D. Volumetric Grids Representation

Volumetric grids representation is another commonly used
3D representation. Wu et al. [8] first proposed ShapeNet
to represent a geometric 3D shape as a probability dis-
tribution on volumetric grid. Following the ShapeNet [8],
Sharma et al. [9] presented an unsupervised learning volumet-
ric representation for denoising, shape completion and classi-
fication. Wu et al. [32] proposed 3D generative adversarial
network based on volumetric convolutional networks for 3D
shapes generation. Xu et al. [33] extended the voxel hashing
to point cloud voxel representation. They used an efficient
multi-scale voxel representation for collision detection in
augmented reality scene. In order to extract the point-wise
feature, Zhou and Tuzel [34] proposed VoxelNet to partition
the space into voxels and aggregate the point-wise feature in
each voxel to shape information as voxel-wise feature. Finally,
the voxel-wise feature can be used for object detection. Le
and Duan [35] proposed the PointGrid to integrate point and
grid for preserving the original coordinates. Signed Distance
Function (SDF) is also commonly used for voxel-based repre-
sentation [36], [37]. SDF values are calculated for each voxel.
Then the zero iso-surface represents the shape information that
can be used for shape completion and 3D reconstruction. How-
ever, these voxel-based methods require a lot of memory and
computation. Moreover, the representation power is limited by
voxel resolution.

E. Point-Wise Representation

Recently, Qi et al. [1] proposed the PointNet to directly
extract the point-wise features. Then a symmetric function
was used for extracting the global feature. However, PointNet
does not capture local structures. To address this problem,
Qi et al. [12] also proposed a hierarchical neural network to
extract the local features of multi-scale neighborhood points.
Achlioptas et al. [38] proposed a learning representation
method based on encoder and decoder network for transform-
ing point into a latent space. Wang et al. [39] proposed a
parametric continuous convolution to extract points features.
Considering the relationship between neighborhood points,
Wang et al. [14] proposed Dynamic Graph CNN (DGCNN)
to expand the receptive field with dynamic graph updates.
Inspired by DGCNN, Wang and Solomon [40] utilized
DGCNN to align two point clouds. Liu et al. [3] proposed a
Relation-Shape Convolutional Neural Network (RSCNN) for
feature learning from the relation between neighbor points.

However, when extracting shape features, these methods
only use the coordinates to extract the relationship between
points, instead of analyzing the features between the point

and surface. Therefore, in this paper, we propose to use
the quadratic terms of the point coordinates and the learned
reference surfaces to construct a new point-to-surface repre-
sentation without loss of information, which is different from
any of the previous 3D representations mentioned above.

III. METHOD

In this section, quadratic terms based point-to-surface repre-
sentation is first formulated and proposed (Sec. III-A). In order
to enhance the description capability of local characteristics,
an adaptive contribution weighting optimization is proposed
(Sec. III-B). Then, we introduce our point-to-surface module
(Sec. III-C). After that, we apply the point-to-surface mod-
ule to the previous network structures for classification and
segmentation (Sec. III-D). Finally, we introduce the detailed
training process (Sec. III-E).

A. Quadratic Terms Based Point-to-Surface Representation

From the point of view of human perception, when we per-
ceive an object, we usually look at the appearance of the object
and compare it with our reference models accumulated through
our past experience. Then, we can determine if the object has
been seen. If so, what is it? Based on this understanding, this
paper proposes to use the reference surface to describe the 3D
object in the form of point cloud. In the real world, no matter
from which angle we look at an object, we cannot see the
whole picture of it. This is because objects have front and back
views in any perspective. Therefore, if a function can represent
a 3D shape, the function must be quadratic. For example, if the
shape is a sphere, the surface can be expressed as:

x2 + y2 + z2−r = 0, (1)

where r is the radius of the sphere. For a ruled quadrics
surface [41], the equation is

xy-z = 0. (2)

More generally, these quadratic terms based surfaces can be
formulated as:

X = (x, y, z, xy, xz, yz, x2, y2, z2)T ,

π = (w1, w2, w3, w4, w5, w6, w7, w8, w9)
T ,

f (x, y, z) = πT · X + c = 0, (3)

where the vector X represents the terms of the function
f (x, y, z), defined as quadratic terms, the notation π repre-
sents the coefficients of these terms, and c is a constant. Here,
we use F(x, y, z) = 0 to represent a set of reference surfaces
fi (x, y, z) = 0 with the number of N f , i ∈ [1, N f ]. If we rep-
resent the reference surface as a function f (x, y, z), the value
of the function f (x, y, z) is related to the distance between
the point and the surface. For example, if f (xi , yi , zi ) = 0,
then the point pi = (xi , yi , zi ) is on the surface; otherwise,
it is not on the surface. The function f (x, y, z) corresponding
to a continuous surface is also continuous, so the value of
f (x, y, z) represents the relationship between a 3D point
p = (x, y, z) and the surface f (x, y, z) = 0. For the surface
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Fig. 2. The pipeline of point-to-surface representation. The quadratic terms are calculated by the point coordinates. Then a 1D convolution is used for learning
the function coefficients. For a point p, feeding quadratic terms into convolution layer can obtain its point-wise representation with the size of 1 × N f . For a
point cloud with Np points, the surface functions yield a Np × N f feature. Then, this feature is inserted into 3D learning networks for point cloud analysis.

Fig. 3. The classification baseline based on the proposed point-to-surface representation. The baseline first calculates the quadratic terms by giving point
coordinates. Then, the quadratic terms are transformed to point-to-surface representation through a 1D convolution layer, a batch normalization (BN) layer
and a ReLU layer successively. Finally, the classification scores are obtained by the following pooling layers and fully connected layers.

function set F(x, y, z), all the function values form a new
representation, formulated as:

AN f ×10X̄ = R, (4)

where the matrix AN f ×10 is made up of N f surface para-
meters. The vector X̄ is the homogeneous expression of X.
The vector R is the new representation with the size of
N f . The 9 quadratic terms are considered as 9 unknowns.
If the rank of matrix AN f ×10 is equal to 9, Equation (4)
has a unique solution. Assuming that these surface functions
are linearly uncorrelated, if the number of surface functions
is greater than 9, i.e., N f ≥ 9, the original unique point
coordinates can be solved with the new representation R
and the surface parameters AN f ×10. Therefore, N f ≥ 9 is
a sufficient condition for no-loss representation.

Fig. 2 shows our pipeline. Given a 3D point p = (x, y, z),
the quadratic terms can be directly calculated by the coor-
dinates of points while the coefficients of the terms need to
be estimated. Here, a surface function contains 9 coefficient
weights (w1 ∼ w9) and one bias c as unknowns to be
estimated. To estimate a surface function fi (x, y, z), we use
the entire point clouds from dataset for the estimation. The
coefficients estimation is implemented through the 3D tasks
training. Instead of estimating a single surface function fi

one at a time, we estimate a set of N f functions all at once.
As such, we estimated N f × 10 unknowns for all surface
functions. After N f surfaces being learned, a point p can
be calculated for its new features, yielding a feature of size
1 × N f (Fig. 2(a)). For a point cloud with Np points, yielding
a feature of size Np × N f , which are inserted into 3D learning
networks for subsequent tasks (Fig. 2(b)), such as classification
and segmentation (Fig. 2(c) and (d)). Based on this pipeline,
we define a classification baseline as shown in Fig. 3. The
baseline first calculates the new representation with a 1D
convolution layer, a Batch Normalization (BN) layer and a
ReLU layer. Then, the representation is fed into pooling layers
and fully connected layers to get classification scores.

B. Adaptive Contribution Weighting

When the network training is finished, the learned global
reference surfaces have been fixed. They are static for the
testing data, which limits the richness and the descriptive capa-
bility of the reference surfaces for various shapes. To address
this problem, we propose an adaptive contribution weighting
optimization to weight the initial representation, equivalent to
weighting the original reference surfaces. Then, we can use
these dynamic reference surfaces to describe different shapes
accordingly.
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Fig. 4. The structure of PS module. The PS module first calculates the initial point-to-surface representations as the baseline. Then, the initial representations
are used to calculate the contribution weights. Finally, the initial representations are weighted by the calculated weights to get the final point-to-surface
representation.

Specifically, we convert the initial point-to-surface represen-
tation into contribution weights through the convolution layers.
This is because the initial point-to-surface function value is
related to the distance from the point to the surface, implying
the relationship between the point and the reference surface.
In addition, this information is different from each point for
every surface, so this point-wise information can be used for
adaptively learning the contribution of each reference surface
to each point. The contribution learning model includes a
convolution layer with the kernel size of 1, a BN layer, a ReLU
layer and a softmax layer. The size of the learned contribution
weights is the same as the initial representation. In this way,
we use the learned weights to weight the initial representation
to get the final point-to-surface representation. This method
is equivalent to changing the static and global surfaces into
dynamic global surfaces. Since the learned weights are dif-
ferent for each point, this dynamic representation can further
enhance the local characteristics.

C. Point-to-Surface Module

To learn the reference surface functions, all point-wise
quadratic terms are fed into a 1D convolution with the kernel
size of 1. The weights and bias in 1D convolution are surface
coefficients and constant. Therefore, the input channel of
the 1D convolution is the number of function terms, i.e., 9.
We estimate a set of N f surface functions. Accordingly,
the output channel of the 1D convolution is set to be N f .
Then, for a point p, the outputs of the 1D convolution are
N f values, corresponding to N f surface function values. For
a point cloud with Np points, after 1D convolution, the initial
representation is extracted based on the quadratic terms and
reference surfaces, yielding a feature of size Np ×N f . Consid-
ering that f (x, y, z) may have a domain, to fit the boundary,
an activation function is used for activating the output of the
convolution.

For adaptive contribution weighting, the initial representa-
tion is fed into a new 1D convolution layer with the kernel
size of 1. Both the input and output channels are set to N f .
Then a BN layer, a ReLU layer and a softmax layer are
followed to get the contribution weights. Finally, the initial
representation is weighted by these weights to get the final
dynamic representation.

We call the above implementation a Point to Surface (PS)
module as shown in Fig. 4. The input of the PS module is
point cloud, and the output is the new representation. Note that,

the PS module is plug-and-play, which can be inserted into the
existing 3D learning pipelines seamlessly, where the reference
surface function coefficients in the module are learned with
its binding pipeline during the learning of specific 3D tasks.
Different tasks with different pipelines may result in different
surface function parameters for their own optimization.

D. 3D Classification and Segmentation

Extracting the local and global shape information of point
cloud is important for 3D classification and segmentation.
However, the traditional method extracts the point-wise feature
solely based on point coordinates (x , y, z), which may
under-fitting for 3D surfaces. Here, we use our point-to-surface
representation.

We plug our PS module into two representative networks
for point cloud classification and segmentation. The two
networks are dynamic graph network DGCNN [14] and
RSCNN [3]. DGCNN [14] is based on dynamic graph struc-
ture for extracting topology information. RSCNN [3] inherits
the PointNet++ [12] hierarchical structure while learning the
geometric information of the neighborhood at a high-level.
The modified DGCNN is shown in Fig. 5. The classification
and segmentation networks modified by RSCNN are shown
in Fig. 6 and Fig. 7, respectively.

As for DGCNN [14] and RSCNN [3], they both extract k
neighborhoods for each point as local geometrical information
by k-nearest neighbors searching or ball-query searching.
As shown in Fig. 5, if the neighborhood is obtained in
feature space, we first calculate the quadratic terms. Then,
these terms are used for neighbor searching (Fig. 5(a)). If the
neighborhood is obtained by point coordinates, the quadratic
terms calculation follows the neighbor searching (Fig. 5(b)).
After the neighbor searching, we get a feature with the size
of k × Np × N f . Therefore, the function coefficients should
be learned by 2D convolution in PS modules.

In the modified DGCNN, the point cloud is first trans-
formed into the point-to-surface representation with our PS
module for the classification. For the segmentation, the PS
module follows the spatial transformation. After PS module,
the new representation is fed into the dynamic graph network
(Fig. 5(c)) for classification and segmentation. For the details
of DGCNN, please refer to [14]. The modified RSCNN for
classification is shown in Fig. 6. The hierarchical architectures
input different number of points. These point sets are first
represented by our point-to-surface representation through a

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on December 06,2022 at 09:38:24 UTC from IEEE Xplore.  Restrictions apply. 



2710 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 5, MAY 2022

Fig. 5. The modified DGCNN [14] with the proposed point-to-surface representation for classification and segmentation. For classification, the input of the
PS module is the original point cloud. While for segmentation, the input is the transformed point cloud with non-Euclidean coordinates. The nearest-neighbor
searching can be based on point coordinates or features, so the PS module has two forms as shown in (a) and (b). (Np : the number of the input points. N f :
the number of the reference surfaces. c: the number of the categories. p: the number of the segmentation parts.).

Fig. 6. The modified RSCNN [3] with the proposed point-to-surface repre-
sentation for classification. Different from the original structure, the modified
network no longer extracts the feature of point coordinates directly, but
extracts the feature of the new representation obtained through PS module.

PS module as illustrated in Fig. 5(b). Then, this representation
is used for classification features learning with RS-Conv. [3].
Finally, the fully connected layers follows the network to
obtain the classification scores. The modified RSCNN for
segmentation is shown in Fig. 7. Sampled multiple point sets
are also fed into our PS module to get the new representation.
Then, this representation is used for extracting local and
global features through RS-Conv. [3] and skip connection. The
features concatenate the category feature. This category feature
is obtained by extending the one-hot categorical vector with
a MLP layer as the strategy in [14]. Finally, the concatenated
features are used for learning the segmentation scores.

E. Implementation Details

The network is trained on a 1080 Ti GPU device. For the
modified DGCNN, we use Stochastic Gradient Descent (SGD)
optimizer to minimize the classification and segmentation loss
function [14]. For the modified RSCNN, the optimizer is
Adam. In classification experiments, the epoch is set to 400 for
full convergence. When the input shape has 2, 048 sampling
points, the batch size is B = 8. While for 1, 024 points
input, the batch size is B = 16. In segmentation experiments,
the epoch is set to 200 for full convergence. The batch size is
set to B = 16. The number of the reference surface functions
F(x, y, z) is set to 64. Our method is implemented by Pytorch.

Fig. 7. The modified RSCNN [3] with the proposed point-to-surface
representation for segmentation. Different from the original structure, the point
Euclidean coordinates are first transformed to new representation through PS
module for further feature extraction.

The modified networks are implemented based on the public
codes of DGCNN [14] and RSCNN [3].

IV. EXPERIMENTS

In this section, we first introduce the experimental datasets.
Then, the baseline of our method is analyzed in terms of
effectiveness, classification performance and complexity. Next,
we evaluate the point-to-surface representation on 3D classi-
fication, part segmentation and semantic segmentation. After
that, we analyze the proposed method through ablation study.
Finally, we visualize the learned reference surfaces and the
point-to-surface representation.

A. Experimental Datasets

We evaluate our method on popular 3D classification
benchmark dataset, i.e. ModelNet10 (MN10) and ModelNet40
(MN40) [8]. Both datasets are CAD models. In the experi-
ment, we sample 1, 024 or 2, 048 points uniformly. Model-
Net40 dataset has 40 categories with 9, 843 training samples
and 2, 468 testing samples. While ModelNet10 has 10 cate-
gories with 3, 991 training samples and 908 testing samples.
For shape part segmentation, we use the popular ShapeNet
part benchmark [42] to evaluate our method. This dataset has
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Fig. 8. The classification accuracy on different power of terms. The first and
third order terms results are obtained by replacing the quadratic terms of the
baseline model by the first and third order terms, respectively.

16 categories with 50 parts. In the experiment, 2, 048 points
are selected as inputs. For semantic segmentation, we use the
popular ScanNet [43] benchmark for evaluation.

B. Point to Surface Representation Evaluation

We first illustrate the effectiveness of our point-to-surface
representation by comparing quadratic terms with the first and
third order terms based on our baseline. Then, we extend our
baseline with popular network structures such as DGCNN [14]
and RSCNN [3] for 3D classification and shape part seg-
mentation. Finally, we extend the PS module to FPConv [44]
for semantic segmentation. The performance of our method
is analyzed by comparing the results that before and after
modification.

1) Analysis of Baseline: We first validate effectiveness
of the proposed quadratic terms based baseline as shown
in Fig. 3. We compare them with the first and third order
terms. The first order terms include x , y and z. The third
order terms include all the first and quadratic terms and the
terms x3, xyz, xy2, . . . , totally 19 terms. The quadratic terms
in Fig. 3 are respectively replaced by the first and third
order terms to obtain the classification accuracy as shown
in Fig. 8. The result shows that quadratic terms based method
outperforms the other two methods. In particular, the quadratic
terms have a significant performance improvement over the
first order terms. The classical methods such as PointNet [1],
PointNet++ [12] and DGCNN [14] all belong to the first-
order-terms based methods. This indicates that the quadratic
terms are more descriptive than the traditional first order terms.
This also proves that the physical implication of learning
based on quadratic terms is more reasonable than that of first
order terms. The learning based on first order terms can be
considered as point cloud description on reference plane.

As shown in Fig. 3, our classification baseline has only one
convolution layer to learn the function coefficients. Neverthe-
less, it has a strong ability to classify the 3D objects. Table I
lists the classification accuracy of our method and the other
state-of-the-art methods. The results show that the accuracy
of our baseline is 89.5% on MN40, which is higher than the
89.2% of multiple-layers PointNet [1]. On MN10, our baseline
achieves a accuracy of 94.0%, higher than PointNet++’s
accuracy of 93.3%.

TABLE I

3D OBJECT CLASSIFICATION RESULT (%) ON MODELNET40 (MN40) AND
MODELNET10 (MN10). THE BEST ONES ARE MARKED IN RED, AND

THE SECOND BEST ONES ARE IN BLUE (“-”: UNKNOWN)

TABLE II

THE COMPARISON OF COMPLEXITY OF DIFFERENT METHODS

Meanwhile, the baseline is very lightweight and fast.
As recorded in Table II, our baseline has approximately 0.4 M
parameters, an order of magnitude lower than PointNet [1].
The flops of our baseline for one sample is 3.2 M, two orders
of magnitude lower than PointNet [1] and approximately 0.2%
of PointNet++ [12]. Therefore, this baseline is suitable for
massive point clouds or a low computing power device. With
regard to our PS module, we use DGCNN [14] network
to calculate the additional parameters and flops. As shown
in Table II, the original DGCNN has 1.813 M parameters and
2484 M flops. After adding our PS module, the increase is
4992 and 102 M, respectively, which is an increase of 0.28%
and 4.11% over the original DGCNN. This indicates that our
PS module also has lower calculation cost.

2) 3D Classification: To further verify the effectiveness
of our method, we expand the baseline with DGCNN [14]
(Fig. 5) and RSCNN [3] (Fig. 6) networks for classification.
We compare our method with the state-of-the-art methods on
MN40 and MN10 datasets. Table I shows the classification
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TABLE III

THE COMPARISON RESULT (%) OF SHAPE SEGMENTATION ON SHAPENET [42]. BEST ONES ARE MARKED IN RED, AND THE SECOND
BEST ONES ARE IN BLUE.DGCNN-T: SPATIAL TRANSFORM IS REMOVED FROM DGCNN [14]

accuracy of popular methods and the modified versions
equipped with our representation. As shown in Table I,
compared with RSCNN [3], our representation improves the
accuracy by 0.6% and 1.9% on MN40 and MN10, respectively,
higher than that of PointAugment (PA) [56]. On the basis of
the performance of DGCNN [14], our method improves by
0.6% and 1.6% on MN40 and MN10, respectively, outper-
forming the other methods on MN40. The improvement is
close to that of PA [56]. When the input number of points
is 2 k, our method has an accuracy of 94.2% on MN40 and
96.5% on MN10, superior to the state-of-the-art methods on
both datasets. Compared with other methods, our performance
improvement is significant. These results indicate that the
point-to-surface representation plays a significant and positive
role in improving the accuracy of 3D classification.

3) Shape Part Segmentation: In order to verify the effective-
ness of our PS module on point cloud segmentation, we also
modify the DGCNN [14] and RSCNN [3] networks with
our representation for comparison. The modified DGCNN is
shown in Fig. 5. The modified RSCNN is shown in Fig. 7.
We use the popular ShapeNet part benchmark [42] to evaluate
our method and the state-of-the-art methods. Referring to [3],
the number of the input points is 2, 048. The methods are
evaluated by mean Inter-over-Union (mIoU). Table III records
the mean IoU, class IoU and every category IoU of different
methods.

When we directly add the PS module into the DGCNN [14],
the results in Table III show that the instance mIoU increases
by 0.3% but the class mIoU decreases by 1.4%. One possible
reason is that the spatial transformation of DGCNN [14]
changes the original Euclidean space, causing the proposed
representation meaningless. In order to verify this point,
we remove the spatial transformation from the above com-
parative experiments, so that the coordinates are in Euclidean
space. In Table III, the two experiments are denoted by
DGCNN-T+PS and DGCNN-T, respectively. The results show
that the modified DGCNN improves the class mIoU and
instance mIoU by 0.7% and 0.3%, respectively, which is

Fig. 9. The comparison of segmentation results between our method and
RSCNN [3]. Different colors represent the segmentation results of different
parts.

significant. This result indicates that our PS module is effective
for the traditional Euclidean spatial point cloud but not for the
transformed non-Euclidean space. For the traditional networks
based on Euclidean coordinates, such as RSCNN [3], after
embedding our PS module, the class mIoU and instance mIoU
are 84.5% and 86.5%, respectively. The instance mIoU is
superior to the other methods. Compared with RSCNN [3],
our method improves the class and instance mIoU by 0.5%
and 0.3%, respectively. Meanwhile, our method outperforms
the others on multiple objects part segmentation as shown
in Table III. In particular, the results also show that the
performance of air plane, cap, car, motor bike, pistol, rocket,
skateboard and table is improved significantly by using our
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TABLE IV

THE COMPARISON RESULTS OF THE SEMANTIC SEGMENTATION ON
SCANNET DATASET BETWEEN THE FPCONV [44] AND THE MODIFIED

NETWORK WITH OUR PS MODULE. THE RESULTS INCLUDE SEG-
MENTATION MIOU, MEAN CLASS ACCURACY (MA) AND OVER

ALL CLASS ACCURACY (OA) (%)

TABLE V

THE ACCURACY (%) OF 3D CLASSIFICATION ON MN40 WITH INITIAL

POINT-TO-SURFACE REPRESENTATION (INIT.), ADAPTIVE

CONTRIBUTION WEIGHTING (ACW)

Fig. 10. Results of our baseline with different numbers of surface functions.

PS module. We also compare some segmentation results with
RSCNN [3] as shown in Fig. 9. These results show that our
method has better result for small parts segmentation. More
results are in Appendix A. The above experimental results
indicate that our point-to-surface representation can enhance
the ability of network feature description in segmentation.

4) Semantic Segmentation: We also investigate the ability
of the proposed point-to-surface representation for complex
scenarios such as the semantic segmentation benchmark Scan-
Net [43]. For the comparison, we add the PS module to
the network structure of FPConv [44] as the method of the
modified RSCNN. The setting for the comparison experiments
are the same except for the PS module. The quantitative
results are recorded in Table IV. The results show that our
PS module improves the mIoU and mean class accuracy of
FPConv by 0.4% and 1.3%, respectively. This means that
the point-to-surface representation is also suitable for feature
extraction in complex scenario.

C. Ablation Study

In this section, our method is analyzed by ablation study
in the application of 3D classification. The ablation study is
performed on the network structure of DGCNN [14]. The
results are recorded in Table V. The original DGCNN has

Fig. 11. Results of classification trained by 64, 128, 256, 512, 1, 024 and
2, 048 points with our method.

Fig. 12. Some learned surfaces with ModelNet40 benchmark. According
to the surface function equation, the sampling point cloud can be obtained
by giving x and y coordinates and solving the z coordinate. Then, the point
cloud is used for mesh reconstruction with MeshLab [63] software.

Fig. 13. Contribution visualization of a certain reference surface function.
Region B shows the continuity of the surface function. Region A illustrates
that different surface functions contribute differently to different parts of a 3D
shape.

an accuracy of 92.9%. After embedding our initial point-
to-surface representation without adaptive contribution weight-
ing, the accuracy is 93.1%, improved by 0.2%. When we add
the adaptive contribution weighting to DGCNN, the accuracy
is improved by another 0.4%. Finally, in order to study
the impact of the number of input points on performance,
we increase the number of input points to 2 k for comparison.
The accuracy has improved significantly, reaching 94.2%.

We also analyze the effect of the surface function number on
performance. Fig. 10 shows the comparison results with dif-
ferent surface function number in baseline. The experimental
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Fig. 14. More part segmentation results on ShapeNet dataset. The results are obtained by the modified RSCNN with our PS module.

results indicate that increasing the number of surface func-
tions can improve the ability of shape representation. As the

number of functions increases to a certain extent, the improve-
ment gradually flattens out. Therefore, a better performance
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Fig. 15. The visualization of point-to-surface representation. The three channels R, G and B of the point cloud color respectively represent the normalized
functional values of the point cloud to three reference surfaces. For each shape, we have visualized 3 × 3 × 7 = 63 point-to-surface representations.

does not require a large number of parameters and
computation.

Finally, we test the robustness of the point-to-surface rep-
resentation to the number of the input points. We trained our
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model with 64, 128, 256, 512, 1, 024 and 2, 048 points, respec-
tively. The test classification accuracy is shown in Fig. 11. The
result shows that our method is robust for different number of
input points. Even with 64 input points, the model still keeps
a higher classification ability. This is of great significance for
the lightweight and real-time applications.

D. Visualization

1) Learned Reference Surfaces: In the training step,
we learn the underlying surfaces through unsupervised learn-
ing. In order to visualize these underlying surfaces, we first
utilize the learned surface function coefficients to get the shape
point cloud by giving the x and y coordinates and solving the z
coordinate. The mesh surface is reconstructed by transforming
the point cloud to meshes with MeshLab [63] software. Some
reconstructed surfaces are shown in Fig. 12. These surfaces are
not obtained by fitting certain shapes, but are learned during
the task to represent all 3D shapes. Since there are quadratic
terms in the surface function, these surfaces are symmetric.
Moreover, they differ from each other in structure, which
ensure a strong representation capability.

2) Point-to-Surface Representation: Here, we want to visu-
alize the contribution of a certain surface function to the point
cloud. To this end, we set the R, G, B values of the point
cloud to three surface function values. Then, we can visualize
the contribution of 3 surface functions at a time. For example,
in order to visualize the representation of function f1(x, y, z),
f2(x, y, z), f3(x, y, z), the color of the point cloud P are
defined as:

R = f̃1(P),

G = f̃2(P),

B = f̃3(P), (5)

where the notation f̃i denotes the normalized value. Then,
all representation values are visualized by a group of col-
orized point cloud. Fig. 13 gives two visualization examples.
As shown in Fig. 13, the circled B region is overly flat
in colour, indicating that the output values of these surface
functions are continuous at these regions. We also notice
some discontinuous regions, such as the green part on the
chair leg in region A. One possible reason is due to the
ReLU activation during the learning. Another reason is that
the training makes different surface functions contribute dif-
ferently to different parts of a 3D shape in a task. More point-
to-surface representations are shown in Appendix B. This
visualization is non-trivial for understanding and analyzing the
point-to-surface representation.

V. CONCLUSION

In this paper, a quadratic terms based point-to-surface repre-
sentation has been proposed to transform the point coordinates
to the relationship between the local point and the global
surfaces. The static representation can also become dynamic
by adaptive contribution weighting. The proposed PS module
can be inserted to the existing 3D learning networks. The
experimental results show that the learning based on quadratic

terms is more descriptive than the first order terms. The
proposed point-to-surface representation is easy to implement
and lightweight. Meanwhile, the modified networks with our
representation outperform the state-of-the-art methods on 3D
classification and segmentation. The experimental results also
indicate that the representation is robust to sparse point cloud
classification.

In the future, we will focus on the rotation invariance of
the point-to-surface representation. In addition, the problem
of over-fitting in 3D vision tasks is another problem worthy
of further study.

APPENDIX A
PART SEGMENTATION RESULTS

More part segmentation results are displayed in Fig. 14.
We compare the results of our method with the Ground
Truth (GT). Please zoom-in for clearer visualization.

APPENDIX B
THE VISUALIZATION OF THE POINT TO

SURFACE REPRESENTATION

More surface function representations are shown in Fig. 15.
As we can only visualize 3 functions at a time by setting RGB
values. Hence, we visualize the contributions of 63 surface
functions by 21 point clouds for one shape. In Fig. 15, these
21 point clouds are divided into 3 rows, with 7 columns in
each row. The row number is indexed by i , the column number
is indexed by j , the color of different point cloud represents
different surface function as follows:

R = f̃21× j+3×i(P),

G = f̃21× j+3×i+1(P),

B = f̃21× j+3×i+2(P). (6)
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