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A B S T R A C T

The paper studies the image fusion from multiple images taken by hand-held cameras with different
exposures. Existing methods often generate unsatisfactory results, such as blurring/ghosting artifacts due to
the problematic handling of camera motions, dynamic contents, and inappropriately fusion of local regions
(e.g., over or under exposed). In addition, they often require a high-quality image registration, which is hard
to achieve in scenarios with large depth variations and dynamic textures, and is also time-consuming. In this
paper, we propose to enable a rough registration by a single homography and combine the inputs seamlessly
to hide any possible misalignment. Specifically, the method first uses a Markov Random Field (MRF) energy
for the labeling of all pixels, which assigns different labels to different aligned input images. During the
labeling, it chooses well-exposed regions and skips moving objects at the same time. Then, the proposed method
combines a Laplacian image according to the labels and constructs the fusion result by solving the Poisson
equation. Furthermore, it adds some internal constraints when solving the Poisson equation for balancing and
improving fusion results. We present various challenging examples, including static/dynamic, indoor/outdoor
and daytime/nighttime scenes, to demonstrate the effectiveness and practicability of the proposed method.

1. Introduction

High-dynamic-range (HDR) imaging techniques have been increas-
ingly used in consumer electronics, road traffic monitoring, and other
industrial, security, or military applications (Darmont, 2012). However,
digital cameras often fail to capture the irradiance range that visible to
human eyes. It is thus quite significant to explore effective HDR syn-
thesis methods or detailed low dynamic range (LDR) synthesis methods.
HDR synthesis methods focus on generating HDR images directly and
their results are always tone mapped to LDR images which preserve
details better than any of its single exposure counterpart (Debevec and
Malik, 1997; Reinhard et al., 2010; Sen et al., 2012; Kalantari, 2017;
Wu et al., 2018; Yan et al., 2019). Detailed LDR synthesis methods
directly synthesize the result from multi-exposure images (Burt, 1984;
Burt and Kolczynski, 1993; Mertens et al., 2007; Wang et al., 2018;
Ma et al., 2019). Our method belongs to the detailed LDR synthesis
category.

Although the multi-exposure fusion (MEF) approaches have been
studied extensively, there are still some drawbacks. For instance, many
existing methods have employed some kinds of merging techniques,
which assume that multiple exposure images are accurately aligned (Li
and Kang, 2012; Li et al., 2013; Paul et al., 2016). Thus, any misalign-
ment due to either camera motions or dynamic contents will lead to
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the so-called ghosting/blurring artifacts. In the meantime, a Laplacian
pyramid reconstruction scheme for image fusion was proposed in Burt
and Adelson (1983), which has been widely adopted in many subse-
quent works (Burt and Kolczynski, 1993; Mertens et al., 2007; Shen
et al., 2014). However, the method (Mertens et al., 2007) also requires
the inputs to be strictly aligned. For each pixel location, every aligned
candidate pixel in the stack contributes to the final pixel value. Thus,
if there are any misaligned regions, the fused results would suffer from
the ghosting or blurring artifacts. Fig. 1 shows two examples, where the
input images are aligned before fusion, but the scenes contain dynamic
textures or objects (tree leaves in the left example and moving persons
in the right example). The fused results by Mertens et al. (2007) suffer
from the blurry (Fig. 1 left) and the ghosting (Fig. 1 right).

Later on, some de-ghosting methods are proposed to handle afore-
mentioned problems (Tursun et al., 2015). Firstly, some methods based
on energy optimization are introduced to maintain image consistency
or distinguish different parameters (Jinno and Okuda, 2008; Granados
et al., 2013). Secondly, some flow-based methods realize registration
with pixel-level accuracy and are effective for aligning moving objects
between two images (Kang et al., 2003; Zimmer et al., 2011; Kalantari,
2017). Thirdly, some patch-based methods (Sen et al., 2012; Hu et al.,
2013) are proposed to reconstruct the input images by patch-based
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Fig. 1. Comparisons with Mertens et al. (2007). The inputs of left results are taken
by us and the right inputs are Hu et al.’s scenes (Hu et al., 2013). Top images in (a),
(b) are results of (Mertens et al., 2007). Our results are shown at the bottom. The
comparisons indicate that our method can effectively solve blur and dynamic objects.

Fig. 2. Comparison of our method with two patch-based method: (Hu et al., 2013;
Sen et al., 2012). (a) Source image sequence. (b) Result of Hu et al. (2013). (c) Result
of Sen et al. (2012). (d) Our result.

synthesis according to one selected reference image, to form a fully reg-
istered image stack. The full alignment means that the reconstruction
compensates both the camera and the scene motions. The synthesized
candidates are then sent to the fusion framework. However, the patch-
based reconstruction is not always robust in complicated situations,
especially when encountered with dynamic textures (e.g., fountains,
waterfalls, tree leaves in the wind), or structured regions. Fig. 2 shows
such an example, where two patch-based methods generate blurry
results in tree crown regions.,

High quality fully registration is challenging. For one thing, it is
difficult to achieve a high-quality alignment under different appear-
ances (Cui et al., 2017). For another, large foreground (Zhang et al.,
2016) and near-range objects (Liu et al., 2016) would complicate the
alignments, and scenes with large depth variations cannot be registered
by a single homography, or by more sophisticated models (Lin et al.,
2017). Besides, non-parametric approaches such as optical flows tend
to generate errors at discontinuous depth boundaries (Kalantari, 2017)
and the patch based reconstruction is also prone to produce errors as
shown in Fig. 2.

To pursue a robust solution, the proposed method abandons the
requirement of full alignment and replaces it by a rough registration
with a single homography. As such, the photomontage idea proposed
by Agarwala et al. (2004) is applied to compose the multi-exposure
images that have been aligned roughly. However, our setting is differ-
ent from Agarwala et al. (2004) in two aspects. First, Agarwala et al.
generate composites interactively, which combines parts of a set of
photographs into a single composite picture. Users select preferred
image regions (e.g., a region containing a smiling face) at different
pictures. In contrast, our solution is fully automatic because we com-
bine image parts according to their exposure qualities. Second, the
combined photos of Agarwala et al. (2004) were captured by a static
tripod, whereas our inputs are captured by hand-held cameras. In our
implementation, the method does not require the perfect registration,
as long as it finds good seams to hide the misalignment.

The proposed method consists of some specific components as fol-
lows. It selects sub-image regions from different roughly aligned ex-
posures by an MRF labeling and combines them seamlessly in the
gradient domain. In this way, each pixel value belongs to a single image
such that it is possible to maintain details well and handle blurring
effectively. Moreover, it considers the dynamic identification and ex-
posure selection in the MRF optimization simultaneously. The selected
regions are not only well-exposed but are free from the interferences of
dynamic objects/textures. Overall, the main contributions are:

(1) The proposed method relaxes the conditions of inputs. Con-
ventional image alignment algorithms always fail to align inputs from
hand-held cameras with large shaking. The proposed method aban-
dons the requirement of full registrations, which can handle various
complicated inputs and generate high-quality fusion results.

(2) The proposed method introduces the dynamic exclusion tech-
nique to handle moving objects. An energy optimization is first applied
to detect moving objects and then a mask is generated to identify the
dynamic pixels of each input, which reflects the probabilities of pixels
being static or dynamic. The final results are free from ghosting with
proper exposure.

(3) We propose to add some internal constraints to lighten under-
exposed regions.

(4) We conduct comprehensive comparisons to demonstrate the
effectiveness of our method, including objective assessment, visual
comparison, complexity comparison and subjective evaluation.

2. Related works

HDR images can be constructed by either directly capturing from
special hardware (Nayar and Mitsunaga, 2000; Tocci et al., 2011), or
synthesizing from multiple low dynamic range (LDR) images at differ-
ent exposure levels using camera response function (CRF) (Mitsunaga
and Nayar, 1999; Grossberg and Nayar, 2003), and then applying tone
mapping (Fattal et al., 2002; Rana et al., 2018) to display (Mann and
Picard, 1995; Debevec and Malik, 1997). MEF methods have become
the most frequently used methods to generate fusion results (HDR
outputs or detailed LDR outputs) for their low-cost and availabilities,
which can be divided into two categories.

Methods that are suitable for static inputs. There are various
MEF algorithms to achieve image fusion with fully static inputs. First,
several edge-preserving filter-based methods have been proposed, in-
cluding guided filter (Li et al., 2013; He et al., 2013), recursive filter (Li
and Kang, 2012) and bilateral filter (Tomasi and Manduchi, 1998).
Second, gradient reconstruction is also widely adopted in image fusion.
The reconstructed image is usually obtained from the manipulated
gradient by solving the Poisson equation (Pérez et al., 2003). Some
variations from Pérez et al. (2003) are then designed to achieve an
acceleration (Jia et al., 2006) or perform the image completion (Shen
et al., 2007). We construct the Laplace image by the approach (Levin
et al., 2004) in which we add some additional constraints for the
lightening of some local image regions. As such, the proposed method
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realizes natural transitions while maintaining image details. Third,
Ma et al. proposed an optimization method, which optimizes an ob-
jective quality measure to improve the performance of typical MEF
methods (Ma et al., 2017). Then, Some deep learning methods are
proposed (Prabhakar et al., 2017; Ma et al., 2019) to achieve better
fusion performance and improve the speed.

Methods based on motion detection or registration. Aforemen-
tioned MEF methods are just suitable for static scenes. To extend the
scope of application, many algorithms approach the de-ghosting prob-
lem from different perspectives, providing solutions that range from
rudimentary heuristics to advanced computer vision techniques (Tur-
sun et al., 2015). Dynamic objects compensation should be properly
processed, otherwise the fused results are easily ruined by the ghosting
or blurring, whose core idea is to detect moving objects first and then
exclude the dynamic areas or assign dynamic areas with small weights
in synthesis process. The motion-based methods include global expo-
sure registration (Tomaszewska and Mantiuk, 2007), moving objects
removal (Zhang and Cham, 2010), moving objects selection (Wang
and Tu, 2013; Lee et al., 2014; Li and Zhang, 2018) and moving
objects registration (Sen et al., 2012; Hu et al., 2013; Kalantari, 2017).
Eden et al. introduced a two-step graph-cut approach to detect and
handle dynamic objects (Eden et al., 2006). Sen et al. proposed a patch-
based energy minimization approach that integrates alignment and
HDR reconstruction in a joint optimization (Sen et al., 2012). Hu et al.
optimized image alignment based on brightness and gradient consis-
tencies on the transformed domain (Hu et al., 2013). Granados et al.
modeled the noise distribution of color values and incorporated it
into MRF to produce HDR images (Granados et al., 2013). Kalan-
tari et al. used optical flow to align the input images to the reference
image, then employed a convolutional neural network to obtain the
HDR image (Kalantari, 2017). Wu et al. introduced a non-flow-based
deep framework for handling scenes with large-scale foreground mo-
tions (Wu et al., 2018). Yan et al. introduced an attention-guided
network to obtain ghost-free results (Yan et al., 2019). In this work,
the method identifies the dynamic areas by MRF labeling. In particular,
it combines the region selection and dynamic detection into a unified
optimization such that the selected regions are both free from ghosting
and well-exposed.

3. Method

The input images are captured by hand-held cameras with varying
exposures. The first step is to align them for motion compensation.
By default, the image with median exposure is picked as the target,
to which the other images are aligned. Slight misaligned errors could
be tolerated in our implementation. We choose the Features from
Accelerated Segment Test (FAST) (Rosten and Drummond, 2006) for
the feature detection and track them by the Kanade–Lucas–Tomasi
(KLT) (Shi and Tomasi, 1994). Specifically, we apply grid-based FAST
feature detection (Guo et al., 2016) to prune the insufficient features
of rich feature regions and balance flat regions with zero gradients. As
such, features are more robust against the luminance differences (dark
regions in under-exposed images and light regions in over-exposed
regions cannot be ignored).

Fig. 3 shows the system pipeline after the alignment. Without loss
of generality, we take four input images as an example. Fig. 3(a) shows
the aligned input image sequence. Fig. 3(b) displays corresponding
weight maps calculated by method (Mertens et al., 2007), which are
then applied to produce a label map (Fig. 3(c)) through MRF energy
minimization. The Laplace values are collected at each pixel from
different images according to the label map to yield a Laplace image.
By solving the Poisson equation properly, The final result is shown in
Fig. 3(d).

3.1. Region selection

The following energy function is optimized for the labeling:

𝐸(𝑋) =
∑

𝑖∈𝜐
𝐸1(𝑥𝑖) + 𝜆′

∑

𝑖∈𝜐
𝐸2(𝑥𝑖) + 𝜆′′

∑

(𝑖,𝑗)∈𝜀
𝐸3(𝑥𝑖, 𝑥𝑗 ) (1)

where each candidate image corresponds to a label and 𝑥𝑖 is the
label of the pixel 𝑖. 𝐸1(𝑥𝑖) and 𝐸2(𝑥𝑖) are data terms, in which 𝐸1(𝑥𝑖)
is the likelihood energy representing the exposure qualities. 𝐸2(𝑥𝑖)
encodes the dynamic information. 𝐸3(𝑥𝑖, 𝑥𝑗 ) is the smoothness term that
encourages the label similarities between neighboring pixels. 𝜐 is the set
of all pixels and 𝜀 is the set of adjacent pixels. 𝜆′ and 𝜆′′ balance the
terms. The energy can be minimized efficiently using graph-cut (Boykov
et al., 2001).

3.1.1. Exposure weights
𝐸1(𝑥𝑖) represents the exposure qualities. It consists of three parts,

the contrast, the saturation and the exposedness (Mertens et al., 2007).
The Contrast evaluates differences in luminance or color that makes
an object distinguishable. It is calculated by applying the Laplace
convolution kernel to the grayscale version of each input image. The
Saturation is determined by a combination of light intensity and how
much it is distributed across the spectrum of different wavelengths.
The saturation measure is defined as the saturation deviation within
the 𝑅, 𝐺 and 𝐵 channels of each pixel. The Exposedness is defined as
how light or dark an image will appear, revealing how well a pixel
is exposed. A Gauss curve function is applied: 𝑒𝑥𝑝(− (𝑖−0.5)2

2𝜎2 ) (we set
𝜎 = 0.2 in our implementation), which evaluates an intensity based on
how close it is to 0.5. It can overcome shortcomings of under-exposed
(intensity is near to 0) and over-exposed (intensity is near to 1).

Mertens et al. combine the three measures equally to form the
weight maps, and then merge the images according to the weight
maps (Mertens et al., 2007). Our method utilizes these weight maps
as the probability for selecting image regions. 𝐸1(𝑥𝑖) is defined as:

𝐸1(𝑥𝑖 = 𝑙𝑎𝑏𝑒𝑙) = 1
𝑊𝑙𝑎𝑏𝑒𝑙(𝑖) + 𝑒𝑝𝑠

(2)

where 𝑙𝑎𝑏𝑒𝑙 corresponds to the image labels; 𝑒𝑝𝑠 is set to 0.001 to avoid
𝑊𝑙𝑎𝑏𝑒𝑙(𝑖) = 0; 𝑊 is the combined weight maps which are normalized
between (0, 1):

𝑊𝑘 = (𝜆1𝐶𝑘) ⋅ (𝜆2𝑆𝑘) ⋅ (𝜆3𝐸𝑘) (3)

where 𝑘 represents the 𝑘th image; 𝐶𝑘, 𝑆𝑘, and 𝐸𝑘 refer to the weights of
contrast, saturation, and exposedness, respectively; ‘‘⋅’’ is the Hadamard
product; 𝜆1, 𝜆2 and 𝜆3 are three alterable parameters that modulate the
influence of the weights. Generally, 𝜆1, 𝜆2, and 𝜆3 are all set to 1. Eq. (2)
aims to select the largest weight value of pixel 𝑖 between weight maps.

3.1.2. Dynamic exclusion
The dynamic areas need to be located so as to be excluded. To

achieve this, we refer to the approach in Zhang et al. (2015). It applies
an energy optimization to detect dynamic objects. After the detection,
the dynamic pixels of each input are identified by a mask, which is then
fed into 𝐸2(𝑥𝑖) in Eq. (1). The energy function reflects the probabilities
of pixels being static or dynamic.

In order to detect dynamic areas, one reference image is selected
and the rest of the images are compared with the reference. The
exposure of the reference image is mapped to the exposures of different
inputs by intensity mapping function (IMF) (Grossberg and Nayar,
2003). IMF is capable of mapping between intensity values of any two
exposures and is robust to scene and camera motions. Fig. 4(a) shows
the input image sequence where the second image is defined as the
reference. The remapped reference images are displayed in Fig. 4(b).
For each input and its corresponding exposure-adjusted reference image
pair, the dynamic mask is calculated by comparing the differences
between the two images using an energy optimization. There are
two terms: a data term that compares the intensity differences and
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Fig. 3. The pipeline of our method. (a) Aligned input images. (b) Weights maps. (c) Final labels obtained by weight maps, with different color representing labels of different
input images. (d) The fusion result.

Fig. 4. Moving objects detection results. (a) Input image sequence by courtesy of Gallo
et al. (2009). (b) Adjusted reference image sequence. (c) Detection results with white
regions denoting moving areas. The second image is selected as reference image, so
the values of second mask are all 0.

a smoothness term that enforces smooth transitions of neighboring
pixels. Two labels are optimized, which yields binary masks 𝑀 , with
0 indicating the static pixels and 1 indicating the dynamic pixels
(Fig. 4(c)).

𝑀(𝑖) =
{

0 𝑖 ∈ 𝑠𝑡𝑎𝑡𝑖𝑐 𝑎𝑟𝑒𝑎𝑠
1 𝑖 ∈ 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑎𝑟𝑒𝑎𝑠

(4)

Skipping moving objects is necessary after obtaining the masks of
dynamic objects. To this end, 𝐸2(𝑥𝑖) is defined as:

𝐸2(𝑥𝑖 = 𝑙𝑎𝑏𝑒𝑙) =
{

∞, 𝑀(𝑖) = 1
0, 𝑀(𝑖) = 0

, (5)

When a pixel is static, 𝐸2(𝑥𝑖) does not introduce any penalties.
Otherwise, if a pixel 𝑖 of one input is detected as dynamic pixels, we
set 𝐸2 = ∞ to exclude dynamic objects completely. Final detection
results are shown in Fig. 4(c). It is obvious that the detection results
are probably correspond to dynamic objects.

3.1.3. Spatial smoothness
𝐸3(𝑥𝑖, 𝑥𝑗 ) is the smoothness term, which is a function of the color

gradient between two nodes 𝑖 and 𝑗. Similar to Li et al. (2004), 𝐸3 is
defined as follows:

𝐸3(𝑥𝑖, 𝑥𝑗 ) = |𝑥𝑖 − 𝑥𝑗 | ⋅ 𝑔(𝐶𝑖𝑗 ), (6)

where 𝑔(𝐶𝑖𝑗 ) = 1
1+𝐶𝑖𝑗

and 𝐶𝑖𝑗 = ‖𝐶(𝑖) − 𝐶(𝑗)‖2. 𝐶(𝑖) represents color
information:

𝐶(𝑖) = 𝑠𝑞𝑟𝑡([𝑅(𝑖)]2 + [𝐵(𝑖)]2 + [𝐺(𝑖)]2) (7)

Fig. 5. (a) Aligned input images by courtesy of Gallo et al. (2009) where the third
image is selected as the reference image. (b) Labels without dynamic term. (c) Final
labels with dynamic term. Notably, if we want to keep the persons, the second image
is selected as the reference.

where 𝑅, 𝐺 and 𝐵 are three channels of input image. Clearly, 𝐶𝑖𝑗 is the
square of 𝐿2-norm of the RGB color difference between pixel 𝑖 and 𝑗.
Therefore, when two pixels have large differences, 𝑔(𝐶𝑖𝑗 ) is near to 0.
In a word, 𝐸3(𝑥𝑖, 𝑥𝑗 ) is a penalty term when adjacent terms are assigned
with different labels.

Fig. 5 demonstrates the results of our labeling. Fig. 5(a) displays
four input images where the third image is selected as the reference.
Fig. 5(b) and (c) show the result labels of without and with the dynamic
detection. Fig. 5(b) is obtained by removing 𝐸2 from Eq. (1), whose
labels are purely based on the quality of exposures. In Fig. 5(c), the
persons in the second image can be excluded if dynamic detection is
enabled.

3.2. Constraints

The image Laplace values are collected according to the labels to
form a Laplace image. The next step is to move back to the image
domain by solving the Poisson equation, which leads to the solving of
a linear sparse system: 𝐴𝑥 = 𝑏, where 𝐴 is a sparse matrix consisting
of 0, −1, and 4, while 𝑏 consists of boundary constraints and Laplace
values.

3.2.1. Boundary constraints
The absolute scale is important when solving the Poisson equation,

which controls the overall brightness of the fused result. Inappropriate
processing methods would lead to some darker or brighter regions than
natural scenes with undesirable detail lost. The proposed method solves
the potential problem by adding the boundary constraints. Specifically,
when we recover the color information, the proposed method selects
the pixels at the image boundary according to the values of the corre-
sponding labels. For example, in left border of Fig. 5(b), the boundary
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Fig. 6. The effect of constraints. (a) Input images by courtesy of Hu et al. (2013). (b)
The location of internal constraints. (c) Without internal constraints. (d) With internal
constraints. (e) and (f) are results generated by inappropriate boundary constraints.
Please zoom in for a clearer observation.

constraint information of pixel 1 to pixel 56 origin from Image-1 and
the constraints of pixel 57 to pixel 70 origin from Image-2.

However, the method does not exactly obey the labels, but employ
a vote strategy. If one label dominates (over 70%), the entire boundary
constraints will come from that label. In Fig. 5(b), the constraints at the
top boundary come from Image-1 while at the left and right boundary,
the constraints obey the labels. At the bottom, the red labels account for
a large proportion, therefore, all constraints of bottom boundary come
from the dominated forth image (which is dominating).

Fig. 6 displays an example, among which Fig. 6(a) shows two input
images. Fig. 6(e) and (f) exhibit the over and under exposed fusion
results by using the boundary constraints only from the first and the
second input image, respectively. It is clear that boundary constraints
are essential to determine a proper brightness.

3.2.2. Internal constraints
Apart from the boundary constraints, the method further adds some

internal constraints, if necessary, to lighten some under-exposed re-
gions. The internal constraints are realized by solving the Poisson
equation twice, which needs to detect the dark regions firstly. If the
preliminary fusion result exists dark regions, some internal constraints
are placed in these regions and solve the Poisson equation again for the
final result. Specifically, the original images (Fig. 6(a)) and preliminary
result (Fig. 6(c)) are divided into some regular grids. For each grid,
we sum the intensities of all pixels and calculate the difference 𝑉dif fer
between the input and preliminary fusion result:

𝑉dif fer =
ℎ
∑

𝑖=1

𝑤
∑

𝑗=1
𝐼𝑖𝑗 −

ℎ
∑

𝑖=1

𝑤
∑

𝑗=1
𝑅𝑖𝑗 (8)

where ℎ and 𝑤 are the height and width of the grid; 𝐼𝑖𝑗 represents the
input value at pixel (𝑖, 𝑗); 𝑅𝑖𝑗 is the preliminary result value at pixel
(𝑖, 𝑗).

We select the desired input 𝐼 according to labels in the grid. If
the grid contains only one label, the corresponding input is chosen.
Otherwise, if a grid cell contains multiple labels, we calculate the
numbers of each label and choose the dominated label. Then, the
difference is compared with a threshold 𝑇𝑐𝑜𝑛𝑠 to determine whether the
grid needs an internal constraint:
{

𝑉dif fer > 𝑇𝑐𝑜𝑛𝑠 yes
𝑉dif fer < 𝑇𝑐𝑜𝑛𝑠 no

(9)

If the difference 𝑉dif fer exceeds the empirical threshold, a constraint
point is added to the middle position of that grid. After the detec-
tion, internal constraint values are attached to 𝑏 and matrix 𝐴 is
adjusted accordingly, then Poisson equation is solved on the second
time. Fig. 6(c) and (d) demonstrate the results of without and with
internal constraints.

Algorithm 1 Multi-exposure photomontage method
Require: Source image sequence {𝑆𝑘} = {𝑆𝑘|1 ≤ 𝑘 ≤ 𝐾}
1: Align the inputs and select the reference 𝑆𝑟
2: Generate 𝐾 − 1 latent image {𝐿𝑘} = {𝐿𝑘|1 ≤ 𝑘 ≤ 𝐾, 𝑘 ≠ 𝑟} using

IMF
3: Obtain Laplace label map by Eq. (1)
4: Reconstruct preliminary result by solving Poisson equation
5: for each input image 𝑆𝑘 do
6: Calculate the difference 𝑉dif fer between input and result of each

grid
7: end for
8: Identify which grids need constraints according to 𝑇𝑐𝑜𝑛𝑠
9: Solve Poisson equation again by adding internal constraints
Ensure: Reconstructed result

∧
𝑆

3.3. Implementation details

Algorithm 1 summarizes our approach. The proposed method has
five parameters, including (1) two balance parameters: 𝜆′ and 𝜆′′, (2)
the height ℎ and the width 𝑤 of each grid, and (3) the threshold 𝑇𝑐𝑜𝑛𝑠.
Here, 𝜆′ influences the accuracy of detecting dynamic regions and 𝜆′′

determines the continuity of Laplace label map. We set 𝜆′ = 3 and
𝜆′′ = 5 in our implementation. Smaller 𝜆′ cannot detect dynamic objects
absolutely, which may lead to blurring or ghosting, whereas larger
𝜆′ brings large seams to Poisson blending. Inappropriate 𝜆′′ causes
problems to Laplace label map and further affects final fusion result
because unsuitable 𝜆′′ cannot balance the data term and smoothness
term. When dividing inputs and preliminary result into regular grids,
we set the height ℎ and the width 𝑤 of each grid to 100. Empirically
we have found that a value of 100 works well for many types of
inputs. Smaller values would increase computational complexity, while
larger values would not be good in lightening dark regions. Then, for a
grid with size 100 × 100 and pixel values between 0 to 255, we set
𝑇𝑐𝑜𝑛𝑠 = 8000. It could be considered as 80 × 100, among which 80
means the average pixel difference between the input and preliminary
fusion result and 100 means the number of darken pixels in preliminary
fusion result. Generally, the threshold ranges from 7000 to 9000.

4. Experiments

We assemble a comprehensive dataset of 135 groups of multi-
exposure image sequences from previous publications, Internet and
our own captures, ranging from daytime–nighttime, static–dynamic,
and outdoor–indoor. Based on the dataset, we conduct comprehen-
sive experiments to verify the performance of our method, including
objective assessment, visual comparison, complexity comparison and
subjective evaluation. Several methods that are just suitable for static
inputs (Li et al., 2013; Li and Kang, 2012; Paul et al., 2016; Mertens
et al., 2007; Ma et al., 2019) and several de-ghosting methods (Sen
et al., 2012; Hu et al., 2013; Kalantari, 2017; Wu et al., 2018) are
selected to be compared with the proposed method. In order to make
a fair comparison, we collect the codes from the authors of the above
algorithms to generate their results with default settings.

4.1. Objective assessment

The main goal of image fusion is to integrate complementary in-
formation from multiple sources so that the fused images are more
suitable for the purpose of human visual perception and computer
processing. Three popular image fusion metrics: 𝑄𝑀𝐼 (Hossny et al.,
2008), 𝑄𝑁𝐶𝐼𝐸 (Wang et al., 2008) and HDR-VDP (Mantiuk et al., 2011)
are adopted to evaluate the performance objectively, which could
estimate how much information is obtained from the input images.
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Table 1
Information about input image sequences.

Source sequences Size Origin

TestChart1 1500 × 1000 × 5 EmpaMTa

Revel 1500 × 1000 × 5 EmpaMT
Knossos6 1500 × 1000 × 5 EmpaMT
Room 640 × 247 × 5 Banterle et al. (2011)
Lake1 1500 × 1000 × 5 EmpaMT
Forth4 1500 × 1000 × 5 EmpaMT
Garage 348 × 222 × 5 Li et al. (2013)
Lamp 512 × 384 × 5 Martin Ĉadíkb

Drink 800 × 600 × 3 Our capture
Market 800 × 600 × 5 Our capture

HsLake 1500 × 1000 × 5 EmpaMT
Street 1024 × 682 × 5 Tursun et al. (2016)
Museum2 1024 × 682 × 5 Tursun et al. (2016)
Puppets 1024 × 812 × 5 Gallo et al. (2009)
Plants 1024 × 682 × 5 Tursun et al. (2016)
Toy 1024 × 682 × 5 Tursun et al. (2016)
Agia 1500 × 1000 × 5 EmpaMT
Forrest 1024 × 683 × 4 Gallo et al. (2009)
Book 800 × 600 × 3 Our capture
Cafe 800 × 600 × 5 Our capture

Train19 1500 × 1000 × 3 Kalantari (2017)
Train5 ×1000 × 3 Kalantari (2017)
Colo 968 × 648 × 3 Hu et al. (2013)
Dome 968 × 648 × 3 Hu et al. (2013)
Duke 968 × 648 × 3 Hu et al. (2013)
Garden 968 × 648 × 3 Hu et al. (2013)
Happy 968 × 648 × 3 Hu et al. (2013)
Lady 968 × 648 × 3 Hu et al. (2013)
Lift 1500 × 1000 × 3 Our capture
Show 1500 × 1000 × 3 Our capture

ahttp://empamedia.ethz.ch/hdrdatabase/index.php.
bhttp://cadik.posvete.cz/tmo.

Fig. 7. Comparisons of the proposed method with several MEF methods. (a) Source image sequence by courtesy of EmpaMT dataset. (b) Result of Li et al. (2013). (c) Result of Li
and Kang (2012). (d) Result of Paul et al. (2016). (e) Result of Mertens et al. (2007). (f) Result of Ma et al. (2019). (g) Our result.

For 𝐾 inputs, the metric 𝑄𝑀𝐼 is defined as:

𝑄𝑀𝐼 = 1
𝐾

𝐾
∑

𝑖=1

𝑀𝐼(𝐼𝑖, 𝐹 )
𝐻(𝐼𝑖) +𝐻(𝐹 )

(10)

where 𝐼𝑖 (𝑖 = 1,… , 𝐾) are inputs, 𝐹 is fusion result, 𝐻 represents

the marginal entropy of an image, 𝑀𝐼 is mutual information between
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Fig. 8. Comparisons of the proposed method with Sen et al. (2012) and Hu et al. (2013). (a) Input image sequence. (b) Result of Sen et al. (2012). (c) Result of Hu et al. (2013).
(d) Our result.

Fig. 9. Comparisons of the proposed method with Sen et al. (2012) and Hu et al. (2013). (a) Input image sequence by courtesy of Gallo et al. (2009). (b) Result of Sen et al.
(2012). (c) Result of Hu et al. (2013). (d) Our result.

Fig. 10. Comparisons of the proposed method with Kalantari (2017) and Wu et al. (2018). (a) Input image sequence by courtesy of Hu et al. (2013). (b) Result of Kalantari
(2017). (c) Result of Wu et al. (2018). (d) Our result. Please zoom in for a clearer observation.

7
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Table 2
Quantitative comparisons of the proposed method with some representative image fusion methods. 𝑄𝑀𝐼 scores range from 0 to 1 with higher values indicating better quality.
𝑄𝑁𝐶𝐼𝐸 and 𝐻𝐷𝑅 − 𝑉 𝐷𝑃 range from 0 to 100 with higher values indicating better performance.

TestChart1 Revel Knossos6 Room Lake1 Forth4 Garage Lamp Drink Market Mean

Li et al. (2013)
𝑄𝑀𝐼 0.605 0.417 0.379 0.221 0.392 0.438 0.503 0.637 0.482 0.314 0.4388
𝑄𝑁𝐶𝐼𝐸 72.231 66.183 67.774 66.119 65.936 69.022 66.158 68.825 63.911 62.406 66.8565
HDR-VDP 24.227 30.818 30.267 30.099 23.227 27.728 27.936 29.994 31.487 26.398 28.218

Li and Kang (2012)
𝑄𝑀𝐼 0.577 0.527 0.482 0.330 0.450 0.539 0.611 0.648 0.489 0.220 0.4873
𝑄𝑁𝐶𝐼𝐸 72.064 66.519 68.034 66.238 60.097 69.344 66.526 68.905 64.007 62.263 66.3997
HDR-VDP 24.728 32.173 32.091 30.871 24.209 29.793 28.012 29.673 30.194 27.762 28.951

Paul et al. (2016)
𝑄𝑀𝐼 0.695 0.518 0.492 0.624 0.629 0.635 0.542 0.492 0.311 0.280 0.5350
𝑄𝑁𝐶𝐼𝐸 72.584 66.631 68.119 67.028 66.822 69.732 66.314 62.363 63.743 62.299 66.5638
HDR-VDP 27.564 33.702 35.446 33.200 26.736 29.662 29.623 29.085 34.273 26.139 30.543

Mertens et al. (2007)
𝑄𝑀𝐼 0.600 0.514 0.573 0.463 0.504 0.644 0.607 0.708 0.549 0.489 0.5651
𝑄𝑁𝐶𝐼𝐸 72.224 66.612 68.413 66.628 66.259 69.616 66.594 69.105 64.502 62.900 67.2873
HDR-VDP 25.904 31.266 31.788 31.540 23.481 29.824 28.311 30.032 35.293 29.116 29.655

Ma et al. (2019)
𝑄𝑀𝐼 0.699 0.584 0.552 0.508 0.682 0.624 0.609 0.660 0.535 0.571 0.6024
𝑄𝑁𝐶𝐼𝐸 72.594 66.761 68.165 66.524 66.728 69.511 66.431 70.024 64.127 63.010 67.3875
HDR-VDP 25.140 31.608 30.446 32.236 25.16 28.898 29.044 30.004 25.396 28.974 29.6879

Ours
𝑄𝑀𝐼 0.724 0.575 0.510 0.655 0.730 0.597 0.633 0.636 0.491 0.563 0.6114
𝑄𝑁𝐶𝐼𝐸 72.635 66.743 68.096 67.038 67.231 69.435 66.742 68.834 64.511 63.527 67.4792
HDR-VDP 30.565 32.221 32.098 35.315 27.191 29.844 29.624 31.112 36.575 29.115 31.366

HsLake Street Museum2 Puppets Plants Toy Agia Forrest Book Cafe Mean

Sen et al. (2012)
𝑄𝑀𝐼 0.430 0.416 0.551 0.525 0.340 0.421 0.233 0.376 0.212 0.389 0.3893
𝑄𝑁𝐶𝐼𝐸 66.121 63.796 66.178 67.524 62.442 64.716 62.120 67.033 60.882 61.151 64.1963
HDR-VDP 27.104 23.920 24.887 25.637 19.061 25.644 22.577 30.086 24.882 27.89 25.169

Hu et al. (2013)
𝑄𝑀𝐼 0.595 0.462 0.646 0.678 0.408 0.520 0.200 0.419 0.240 0.460 0.4628
𝑄𝑁𝐶𝐼𝐸 66.715 64.008 66.437 67.933 62.483 65.038 62.100 67.526 61.225 61.844 64.5309
HDR-VDP 29.841 23.873 23.514 25.530 19.509 27.072 21.589 30.052 24.67 26.643 25.227

Ours
𝑄𝑀𝐼 0.592 0.484 0.687 0.745 0.578 0.503 0.323 0.379 0.392 0.629 0.5312
𝑄𝑁𝐶𝐼𝐸 66.732 64.234 66.529 68.014 63.128 64.909 62.300 67.458 62.917 66.256 65.2477
HDR-VDP 29.974 23.971 23.116 25.649 20.116 26.983 21.777 30.101 25.01 28.125 25.482

Train19 Train5 Colo Dome Duke Garden Happy Lady Lift Show Mean

Kalantari (2017)
𝑄𝑀𝐼 0.622 0.495 0.588 0.786 0.678 0.262 0.351 0.704 0.388 0.494 0.5368
𝑄𝑁𝐶𝐼𝐸 76.230 75.534 75.418 76.334 75.653 75.113 75.208 75.970 70.524 69.437 74.5421
HDR-VDP 27.199 24.574 25.445 26.979 25.733 22.953 25.514 26.461 26.445 25.574 25.6879

Wu et al. (2018)
𝑄𝑀𝐼 0.805 0.614 0.790 0.798 0.812 0.505 0.455 0.812 0.501 0.542 0.6634
𝑄𝑁𝐶𝐼𝐸 76.374 75.653 75.652 76.512 75.701 75.330 75.290 76.063 71.583 68.123 74.6281
HDR-VDP 30.779 27.212 30.458 25.634 27.967 27.432 23.775 24.472 26.811 26.547 27.1087

Ours
𝑄𝑀𝐼 0.774 0.751 0.800 0.778 0.828 0.510 0.578 0.743 0.535 0.575 0.6872
𝑄𝑁𝐶𝐼𝐸 76.472 75.751 75.664 76.355 75.924 75.318 75.660 76.180 70.568 70.609 74.8501
HDR-VDP 31.547 27.724 27.137 27.707 29.644 25.602 27.019 28.716 26.900 27.537 27.9533

two images. The quality metric 𝑄𝑀𝐼 measures how well the original
information from source images is preserved in the fused image.

The nonlinear correlation information entropy 𝑄𝑁𝐶𝐼𝐸 (Wang et al.,
2008; Liu et al., 2011), used as a nonlinear correlation measure of the
concerned variables, is defined as:

𝑄𝑁𝐶𝐼𝐸 = 100 ∗ (1 +
𝐾
∑

𝑖=1

𝜆𝑖𝑅

𝐾
log𝑏

𝜆𝑖𝑅

𝐾
) (11)

where 𝑏 is determined by the intensity level, i.e., 𝑏 = 256; 𝑅 is the
nonlinear correlation matrix of the concerned 𝐾 variables; 𝜆𝑖 (𝑖 =
1,… , 𝐾), are the eigenvalues of 𝑅. NCIE owns strong suitability as a
measure for the nonlinear type of correlation of multiple variables.

HDR-VDR computes visual difference based on human perception
rather than mathematical differences (Mantiuk et al., 2011). However,
HDR-VDP compares a pair of images and predicts the visibility and
quality. To apply it for multi-exposure inputs, we first obtain the value
between each input and fusion result (ℎ𝑑𝑟 − 𝑣𝑑𝑝)𝑖, and then get their
average result, as described in Eq. (12):

𝐻𝐷𝑅 − 𝑉 𝐷𝑃 = 1
𝐾

𝐾
∑

𝑖=1
(ℎ𝑑𝑟 − 𝑣𝑑𝑝)𝑖 (12)

Thirty image sequences are collected for the comparison (listed in
Table 1). These sequences are divided for different categories because
the compared methods are suitable for different inputs. The first 10
sequences are either captured by cameras mounted on a tripod or

aligned before the fusion calculation. Our method is compared with
several MEF methods that are suitable for static inputs (Li et al., 2013;
Li and Kang, 2012; Paul et al., 2016; Mertens et al., 2007; Ma et al.,
2019) on these 10 scenes and the comparison results are shown in
Table 2 (from the second row to seventh row). As can be seen, the
proposed method provides results with better 𝑄𝑀𝐼 , 𝑄𝑁𝐶𝐼𝐸 and HDR-
VDP values in most of the cases. The middle 10 sequences are dynamic
scenes with moving objects or camera motions. Two state-of-the-art de-
ghosting methods (Sen et al., 2012; Hu et al., 2013) are compared on
these sequences. They reconstruct the underlying image stacks by patch
match oriented optimization. Table 2 (from eighth row to tenth row)
shows that although these three methods get similar 𝑄𝑁𝐶𝐼𝐸 scores in
some cases, the proposed method owns superior performance overall.
The last 10 sequences are applied for the comparison with the deep
learning image fusion methods (Kalantari, 2017; Wu et al., 2018).
They are separated from typical de-ghosting methods because they
are just suitable for inputs with fixed images (three images). Deep
learning methods have the advantage that they can exploit information
extracted from training data to identify and compensate for image
regions that do not meet the assumptions underlying the HDR process.
However, they lack flexibility and robustness. Deep learning methods
may also encounter uncertain problems caused by feature extraction
and deficiency of respective field. Therefore, they may not get high
metric values when computing the degree of information preservation
from inputs to fusion results.

8



R. Li, S. Liu, G. Liu et al. Computer Vision and Image Understanding 193 (2020) 102929

Note that some methods (Sen et al., 2012; Kalantari, 2017; Wu
et al., 2018) generate HDR outputs and their final comparison results
are obtained by tonemapping using Photomatix.1

4.2. Visual comparison

In this part, our method is first compared with Li et al. (2013), Li
and Kang (2012), Paul et al. (2016), Mertens et al. (2007) and Ma et al.
(2019). These five methods take the inputs without camera motion. We
feed the inputs that are pre-aligned or captured by static cameras to
their algorithms and generate the results for the comparison (Fig. 7).
Some slight movements of the right tree in Fig. 7 lead to blur artifacts of
other MEF methods. Although some compared methods have their own
strategies to tackle with dynamic objects, such as median and recursive
filters of Li and Kang (2012), they still produce unsatisfactory blur.
Li et al. treated RGB channels separately, making it difficult to make
proper use of color information (Li et al., 2013). As a result, it produces
results with unnatural color (Fig. 7(b)). Paul et al. reconstructed image
using Haar wavelet (Paul et al., 2016) which is easy to blur structural
information (Fig. 7(d)). Mertens’ method (Mertens et al., 2007) cannot
avoid blur artifacts for its weight combination strategy (Fig. 7(e)).
Ma et al. applied a context aggregation network to generate weight
maps (Ma et al., 2019), which has some improvement but leads to
similar artifacts with Mertens’ method. The proposed method performs
well with respect to the slight movements, which does not involve
synthesis process and is likely to select areas continuously.

Figs. 8 and 9 display the comparisons with two de-ghosting meth-
ods: (Sen et al., 2012; Hu et al., 2013). The two patch-based approaches
aim to reconstruct ghost regions in the output image by transferring
information from inputs which are determined by patch matching.
However, they cannot recover the structured regions properly. In Fig. 8,
the change of exposure degrades the performance of their results. Espe-
cially, the gray artifacts in the ‘text’ regions of Fig. 8(b) are unexpected.
Note that, Hu’s method tends to suffer from color drifting in some
cases, which occurs in computing generic intensity mapping function
and then causes the radiance consistency measure to be ineffective. In
Fig. 9, Hu’s approach blur the tree leaves (middle part in (Fig. 9(b)).
Moreover, the trunks in the right region of their result lose texture
information severely. Sen’s method performs better than Hu’s method,
however, their result exists slight blur in red arrow region (Fig. 9(b)).
The errors in motion estimation are difficult to avoid in the presence of
tiny random motions for patch-based method although they generally
produce relatively good results. Our method abandons generating re-
sults from every input. It selects regions from single image which avoids
blur artifacts effectively.

Fig. 10 shows the comparison with two deep learning methods
(Kalantari et al., 2013; Wu et al., 2018). Kalantari et al. applied optical
flow to align inputs first and then sent them to a conventional neural
network to obtain fused results, which may produce artifacts due to
two main reasons: misalignment of optical flow and the limitation of
merging process. Wu et al. improved Kalantari et al.’s method and
embedded the alignment into the network. The two methods adopt
similar network architecture and produce unnatural transformations in
sky region (yellow arrows). Moreover, they also generate results with
undesirable artifacts around the building (red arrows). Our method can
properly handle such problems and obtain results with more details and
higher sensory experience (red box region).

4.3. Complexity comparison

Computing efficiency is also important for evaluating fusion per-
formance. Methods that are just suitable for static inputs spend less
time (less than 10 s) for whole image fusion process because they are
not necessary to handle dynamic objects. We conduct a complexity

1 https://www.hdrsoft.com/index.html.

Fig. 11. The numbers are the performance of votes obtained by each method.

comparison with two de-ghosting methods (Sen et al., 2012; Hu et al.,
2013) and two deep learning methods (Kalantari, 2017; Wu et al.,
2018), which is exhibited in Table 3. Upon the same inputs with
size 1500 × 1000 × 3, all experiments are conducted on a computer
with i7 3.4 GHz CPU and 32G RAM. Results show that the proposed
method is more computationally efficient. The methods of Sen et al.
(2012) and Hu et al. (2013) take more time on patch match oriented
optimization. The optical flow alignment in Kalantari et al. (2013)
spends approximately 50𝑠 on average. Our optimized code is a little bit
faster than Wu et al. (2018) and significantly faster than other methods.

4.4. Subjective evaluation

We further conduct a user study (Abebe et al., 2018) to evaluate
our method subjectively. We invited 20 viewers (12 male and 8 female
subjects aged between 20 and 50) to evaluate the visual quality of
different image fusion methods concerning the following two aspects:

• the maintenance of the image details
• the overall perception

The participants are allowed to zoom in and zoom out the images
for better observation. To minimize the influence of fatigue effect, the
length of a session is limited to a maximum of 30 min. The subjective
testing environment was set up in a normal indoor office with an
ordinary illumination level. In the evaluation, 20 groups of results are
randomly selected from the dataset and every group involves the results
of Sen et al. (2012), Hu et al. (2013), Kalantari (2017) and Wu et al.
(2018) and our method. We do not subjectively compare our results
with the MEF methods whose inputs are fully static because their results
are obviously inferior to aforementioned methods’ results when dealing
with dynamic scenes. During the test, five fused results are shown to the
viewers at the same time on a computer screen but in random spatial
order. These images are displayed on an LCD monitor at a resolution of
1920 × 1080 pixels with Truecolor (32 bit) at 60 Hz. For each image
set, the viewers are asked to give 5 integer scores that best reflect the
perceptual quality of 5 fused image. The scores range from 1 to 10,
where 1 denotes the worst quality and 10 is the best. Once all scores
are entered for a given scene, the viewers save their decisions and
proceeded to the next scene.

We first calculate the number of best scores of 400 groups (20
viewers × 20 groups of results) and display the results in Fig. 11. It is
obvious that our results are favored by a majority of viewers (approx-
imate 40%). Then, Fig. 12 shows the mean scores and corresponding
errors of 2000 trials (20 viewers and each viewer saw 100 images).
Our method has the highest mean score, while Wu et al. (2018) is the
second best on average. Wu et al. (2018) is an optimized method based
on Kalantari (2017). Two patch-based de-ghosting methods (Sen et al.,
2012; Hu et al., 2013) do not have significant differences, among which
the latter one performs a little better than the former one by properly
dealing with large saturated regions.
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Table 3
Average execution time in seconds on test image sequences.

Methods Sen et al. (2012) Hu et al. (2013) Kalantari (2017) Wu et al. (2018) Ours
Time (s) 252 ± 20 181 ± 38 68 ± 5.1 17 ± 3.8 11 ± 4.7

Table 4
One-way ANOVA results comparing the different methods.

Comparisons 𝐹 𝑝-value

Overall 𝐹 (4, 1995) = 23.07 𝑝 < 0.001
Ours vs. Sen et al. (2012) 𝐹 (1, 798) = 57.42 𝑝 < 0.001
Ours vs. Hu et al. (2013) 𝐹 (1, 798) = 57.50 𝑝 < 0.001
Ours vs. Kalantari (2017) 𝐹 (1, 798) = 73.20 𝑝 < 0.001
Ours vs. Wu et al. (2018) 𝐹 (1, 798) = 26.80 𝑝 < 0.001

Fig. 12. Mean and standard deviation of subjective evaluation votes over 20 users.

Next, these 2000 scores are analyzed for significance test using one-
way ANOVA (ANalysis Of VAriance), as shown in Table 4. Overall
and individual comparisons of the proposed method with other four
methods indicate that the subjective results are significant, whose 𝑝-
values are smaller than 0.001. Except for the comparisons in Table 4,
we analyze the significance between Sen et al. (2012), Hu et al.
(2013), Kalantari (2017) and Wu et al. (2018), among which the 𝑝-
value between Sen et al. (2012) and Hu et al. (2013) equals to 0.5174
(𝐹 (1, 798) = 0.43) and other 𝑝-values are smaller than 0.05. Sen et al.
(2012) and Hu et al. (2013) also have similar mean and standard
deviation in Fig. 12.

Last, we compute the coefficient of consistency (Kappa coefficient)
between different viewers of one specific method. There are 190 com-
binations of any two viewers and we randomly select 30 groups to
calculate their Kappa values. The total 150 Kappa results (5 methods
× 30 groups of scores) range from 0.63 to 1 (average 0.69), which
demonstrates that users agree with each other to a significant extent
on the performance of any individual method.

5. Conclusion

We have presented a method for accurately fusing multi-exposure
images captured by hand-held cameras. In image fusion, high-quality
image registration is hard to achieve when scenes have large depth
variations and dynamic textures. The proposed method does not require
high-quality registration before fusion. It selects well-exposed regions
and detects dynamic objects from roughly aligned images using MRF
energy minimization. Then, the method finds good seams to hide
misalignment when solving Poisson equation. Proper boundary con-
straints and internal constraints are added for desired brightness. It thus
offers the prospect of more extensive applications of image fusion. We
conduct comprehensive comparisons with several typical MEF methods
to demonstrate its effectiveness.
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