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ABSTRACT

The paper proposes a hybrid synthesis method for multi-
exposure image fusion taken by hand-held cameras. Motions
either due to the shaky cameras or caused by dynamic scenes
should be compensated before any content fusion. The mis-
alignment will cause blurring/ghosting artifacts in the fused
result. The proposed method can deal with such motions and
maintain the exposure information of each input effectively.
In particular, the proposed method first applies optical flow
for a coarse registration, which performs well with complex
non-rigid motion but produces deformations at regions with
missing correspondences. To correct such error registration,
we segment images into superpixels and identify problematic
alignments based on each superpixel, which is further aligned
by PatchMatch. After that, the proposed method obtains a
fully aligned image stack which facilitates a high-quality
fusion that is free from blurring/ghosting artifacts. We com-
pare our method with existing fusion algorithms on various
challenging examples, including the static/dynamic, the in-
door/outdoor and the daytime/nighttime scenes. Experiment
results demonstrate the effectiveness and robustness.

Index Terms— Multi-exposure fusion, optical flow, patch
match

1. INTRODUCTION

Dynamic ranges of natural scenes are much wider than those
captured by commercial imaging products. Digital cameras
often fail to capture the irradiance range that visible to the
human eyes. High dynamic range (HDR) imaging techniques
have attracted considerable interests due to they can overcome
such limitation. HDR imaging has been increasingly used
in consumer electronics, industrial and security [1]. Directly
capturing and displaying an HDR image is expensive. A rel-
atively cheap way is to capture a stack of different exposure
images and then merge them together. There are two main
categories to conduct the synthesis. One is to reconstruct
an HDR image through camera response function (CRF) and
then apply the tone mapping for the display [2, 3]. The other
category, multi-exposure fusion (MEF), can directly synthe-
size a low dynamic range (LDR) image from several different
exposure images that is more informative and detailed than

any input. Our method belongs to the second category.
Since its first introduction in 1980’s [4], image blending

algorithms evolve quickly. They produce high-quality results
when input sequence is captured by static cameras mounted
on a tripod under static scenes. Mertens et al. [5] combined
contrast, saturation and exposedness information to gener-
ate weight maps and applied pyramid reconstruction to fuse
multi-exposure image sequence. The method is robust and
works well for static inputs. However, the weight maps are
often too noisy and, sometimes, may yield artifacts such as
unnatural transitions and detail losses. Later, some modi-
fied exposure fusion methods [6, 7, 8, 9] were proposed to
improve the performance of fusion image by filters [6, 7] or
through gradient reconstructions [8, 9].

Above typical MEF algorithms require input exposures to
be perfectly aligned. Otherwise, any motion, either due to
dynamic scenes or hand-shakes, will cause blurring/ghosting
artifacts. In particular, the method [5] needs the inputs with
strict alignment because every candidate pixel in the stack
contributes to the final pixel value. If there are any misaligned
regions, the fusion results would suffer from artifacts. As
shown in Fig. 1, the fused result of [5] suffers from severe
ghosting. The performance of fusion is highly dependent on
the accuracy of motion estimation. Therefore, exploring effi-
cient motion compensation strategies is essential. According
to Tursun et al. [10], existing motion compensation methods
can be divided into several categories: the moving objects re-
moval [11], the moving objects selection [12, 13], the optical
flow based registration [14, 15, 16] and the patch-based reg-
istration [17, 18, 19, 20]. Their core idea is to detect moving
objects, then the dynamic areas are excluded or assigned with
small weights when synthesizing inputs.

In this paper, we propose a hybrid synthesis fusion
method for hand-held camera inputs with dynamic con-
tents. It first applies optical flow [22] to align inputs to
the reference. Optical flow methods can align images with
complex motions, but produce deformations in the regions
with no correspondences. As a result, we segment images
into superpixels [23] and use PatchMatch [24] to correct error
superpixels which are identified by computing flow motion
variances. After the registration of optical flow and the com-
pensation of PatchMatch, a fully registered image stack is
delivered. Finally, we fuse registered images by [5].
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Fig. 2. The pipeline of our method. (a) Input images with different exposures. (b) Optical flow results and error regions caused
by error flows. (c) PatchMatch results. (d) Fusion results.

Fig. 1. The ghosting artifacts of MEF method. (a) Input im-
ages origin from Pece [21]. (b) Result of [5]. (c) Our result.

2. OUR METHOD

Figure 2 exhibits the hybrid fusion pipeline. Fig. 2(a) displays
input image sequence. ‘Input’ images in Fig. 2(b) are optical
flow alignment results. Fig. 2(b) shows the process of detect-
ing and handling error regions caused by optical flow. The
proposed method segments the reference image using super-
pixels and calculates flow variance within each of them. The
corresponding superpixel is regarded as an error region once
the variance exceeds a threshold. PatchMatch is utilized to
further align error regions. Fig. 2(c) shows the results gener-
ated by PatchMatch correction. The combination of the two
align methods achieves a fast speed as well as correctly aligns
the challenging areas, such as regions containing occlusions
and dynamic textures. Fig. 2(d) is the final fusion result.

2.1. Optical flow alignment

Given a sequence of LDR images with different exposures,
the proposed method first aligns the low and high exposure
images to the medium exposure one (reference) using optical
flow. Kroeger et al.’s optical flow method [22] is chosen as
coarse registration strategy. However, optical flow methods

Fig. 3. Results of PatchMatch on Kalantari et al.’s scene [16].
(a) Reference image (left) and its exposure change result
(right). (b) An optical flow result. (c) Some superpixel re-
sults. (d) PatchMatch result.

will produce deformations in the regions with discontinuous
depth, which are caused by occlusions that either due to the
parallax or owing to the dynamic contents. Locating these
error regions and further align them are essential.

Instead of locating errors for every pixel, the proposed
method segments images into superpixels, and detects errors
for each superpixel. Dividing images into superpixels can not
only maintain image continuity but also reduce the complex-
ity of subsequent image processing tasks. SLIC segmenta-
tion [23] is applied to generate superpixels, which adapts a k-
means clustering to efficiently generate superpixels. The pro-
posed method first obtains the segmentation mask of the ref-
erence image by SLIC and then applies the mask to segment
other aligned input images. As such, all input images share
the same segmentation. When detecting error regions, flow
motion variance is calculated for each superpixel. Error op-
tical flow registration often possesses high motion variances.
Therefore, applying a threshold is adapted to distinguish cor-
rect superpixels and problematic superpixels. If the variance
exceeds an empirical threshold Tflow, the corresponding re-
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gion is labeled as error region.

2.2. PatchMatch alignment

PatchMatch [24] algorithm is adopted to correct error regis-
trations. The algorithm offers substantial performance im-
provements for the randomized patch-correspondence search-
ing. The proposed method abandons running PatchMatch
over the whole reference image by substitution of finding n-
earest neighbor field (NNF) in a small region. As shown in
Fig. 3(c), the proposed method first gets the height h and
width w of one superpixel and then runs PatchMatch in a re-
gion with height 2 ˚ h and width 2 ˚ w around the superpix-
el. Generally, running PatchMatch on the selected region can
recover error registrations perfectly. However, PatchMatch
method tends to maintain color and structural similarity be-
tween input and reference. Directly applying PatchMatch to
align error regions eliminates the problem of dynamic objects
but changes the exposure information of inputs.

The proposed method invokes IMF algorithm [25] to ad-
just the exposure of reference image to input image before
utilizing PatchMatch. IMF is capable of mapping between in-
tensity values of any two exposures. The combination of IMF
and PatchMatch reconstruction excludes dynamic regions and
maintains the exposure of inputs simultaneously.

Fig. 3(a) shows the reference image R (left) and its IM-
F adjusted exposure image L (right). Fig. 3(b) is a warped
result of optical flow. Fig. 3(c) highlights some superpixels:
left superpixel (red border) originates from Fig. 3(b), which
suffers distortions (the door frame shows obvious bend); mid-
dle superpixel (blue border) is the corresponding region from
L, which is regarded as the reference image when employing
PatchMatch; right superpixel (green border) is PatchMatch
result which is free from distortions. Fig. 3(d) is the final
PatchMatch result without problematic superpixels.

2.3. Implementation details

The proposed approach is summarized in Algorithm 1. Two
parameters are needed for clarification: number of superpixel-
s Ns and the threshold Tflow. The value of Ns has a large im-
pact on processing time. For an image with size 1500ˆ1000,
we set Ns around 580 empirically. Generally, it ranges from
560 to 600. The threshold Tflow takes different values when
handling images with different exposures. It is set to 1.5 and
3.5 separately when dealing with under-exposure and over-
exposure images.

3. EXPERIMENTS

Both objective evaluation and visual comparisons are con-
ducted to verify the performance of the proposed method.
In objective assessment section, we compare image quality
metric values and calculation complexities of the proposed

Algorithm 1 Hybrid synthesis algorithm
Require: Source image sequence tSku “ tSk|1 ď k ď Ku

1: Select the reference Sr and segment it into Ns superpixels
2: Generate K ´ 1 latent image tLku “ tLk|1 ď k ď K, k ‰ ru

using IMF
3: for each input image Skpk‰rq do
4: Align the input to reference image using optical flow
5: Calculate flow motion variance for each superpixel
6: Detect errors according to Tflow

7: Further align error regions to Lk using PatchMatch
8: end for
9: Fuse aligned image sequence t ^

Sku “ t ^
Sk |1 ď k ď Ku

Ensure: Fusion result
^
S

Table 2. Average execution time in seconds on 12 source
image sequence of size 1500ˆ1000ˆ5.

Alg [16] [19] [17] [20] Our
Time(s) 68˘5.1 381˘38 252˘20 16˘0.7 12˘1

method against several state-of-the-art techniques which bear
some resemblances with our method. In visual comparisons,
apart from the comparisons with above methods of dynamic
scenes, we also select several representative MEF algorithms
for static scene comparisons. The combating MEF methods
are chosen to cover a diversity of types.

3.1. Objective assessment

3.1.1. Objective evaluation values

The metric QS [29] is selected as evaluation criteria:

QS “ 1

|W |
ÿ

wPW
rλpwqQ0pa, f |wq`p1´λpwqqQ0pb, f |wqs (1)

where a and b are input images; f is fused image; the lo-
cal quality Q0pa, b|wq is computed for the values api, jq and
bpi, jq where pixels pi, jq lie in the sliding window w; W is
the family of all windows. λpwq is a local weight between
0 and 1 indicating the relative importance of images a com-
pared to image b. The quality metric evaluates how much of
the salient information contained in each of the input images
has been transferred into the fused image. It ranges from 0
to 1 with higher value indicating better performance. Table 1
displays the comparison results of our method with [17], [19]
and [20]. As can be seen, the proposed method provides re-
sults with better QS values in most of the cases.

3.1.2. Calculation complexity

We conduct a complexity comparison which is shown in Ta-
ble 2. Upon the same inputs, all experiments are conducted on
a computer with i7 3.4 GHz CPU and 32G RAM. Our method
takes approximately 12 seconds. Table 2 demonstrates that
the proposed method is more computationally efficient.

4641

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on September 06,2021 at 03:09:56 UTC from IEEE Xplore.  Restrictions apply. 



Table 1. Performance comparisons with Sen et al. [17], Hu et al. [19] and Ma et al. [20].
Pedestrian Fountain Noise Cafe Forth2 Falls Sunset Zurich Zurich2 Train1 Capt1 Capt2 Avg

[17] 0.731 0.573 0.265 0.684 0.794 0.589 0.688 0.745 0.729 0.619 0.486 0.476 0.615
[19] 0.766 0.635 0.753 0.751 0.825 0.767 0.759 0.744 0.782 0.619 0.499 0.480 0.698
[20] 0.777 0.616 0.783 0.725 0.818 0.717 0.730 0.771 0.739 0.639 0.468 0.448 0.686
Our 0.781 0.637 0.769 0.767 0.845 0.781 0.802 0.754 0.799 0.620 0.490 0.486 0.711

Fig. 4. Comparisons with other methods. (a) Result of [19]. (b) Result of [17]. (c) Result of [20]. (d) Result of [16]. (e) Our
result. Please zoom in for a clearer observation.

Fig. 5. Comparisons with other MEF methods. (a) Result of [6]. (b) Result of [7]. (c) Result of [26]. (d) Result of [27]. (e)
Result of [8]. (f) Result of [5]. (g) Result of [28]. (h) Our result.

3.2. Visual comparisons

Fig. 4 shows the comparisons with [19], [17], [20] and [16].
Fig. 4 (a) and (b) exhibite that patch-based methods can not
deal with the structural regions well. Method [20] cannot
recover some information perfectly such as the left tree in
Fig. 4(c). The flow-based deep learning method [16] suffers
from artifacts in tree leaves regions (Fig. 4(d)). Our method
performs well and is free from such artifacts. Then we selec-
t several typical MEF algorithms to compare: [6], [7], [26],
[27], [8], [5] and [28]. They require static inputs without
shaky scenes and dynamic objects. Fig. 5 shows the compar-
ison results. Other MEF methods can not deal with dynamic
objects/texture properly so the tree leaves in the middle re-
gion suffer different degree of fuzziness (Fig. 5(a)-Fig. 5(g)).
Our method can maintain the color and structural information
simultaneously and generate natural fusion result.

4. CONCLUSION

We have presented a hybrid synthesis method for MEF. The
method combines the strengths of flow-based methods and
patch-based methods. Optical flow is applied for global reg-
istration which guarantees the computation efficiency. Patch-
Match is used to align error regions, which can fully exclude
moving objects. The method is evaluated both qualitatively
and quantitatively to demonstrate the effectiveness.
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